Literature

WoS Indexed – (Greenhouse + PV) Papers

  1. Nayak, S; Tiwari, GN, Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse, ENERG BUILDINGS (2008) Nr 19 Vol 40 (11), pp.2015-2021, DOI:10.1016/j.enbuild.2008.05.007, WOS:000260042600004
  2. Kim, HC; Fthenakis, V; Choi, JK; Turney, DE, Life Cycle Greenhouse Gas Emissions of Thin-film Photovoltaic Electricity Generation, J IND ECOL (2012) Nr 36 Vol 16 (), pp.S110-S121, DOI:10.1111/j.1530-9290.2011.00423.x, WOS:000303496400011
  3. Ganguly, A; Misra, D; Ghosh, S, Modeling and analysis of solar photovoltaic-electrolyzer-fuel cell hybrid power system integrated with a floriculture greenhouse, ENERG BUILDINGS (2010) Nr 35 Vol 42 (11), pp.2036-2043, DOI:10.1016/j.enbuild.2010.06.012, WOS:000282404800010
  4. Barnwal, P; Tiwari, GN, Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: An experimental study, SOL ENERGY (2008) Nr 32 Vol 82 (12), pp.1131-1144, DOI:10.1016/j.solener.2008.05.012, WOS:000261523700004
  5. Cossu, M; Murgia, L; Ledda, L; Deligios, PA; Sirigu, A; Chessa, F; Pazzona, A, Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity, APPL ENERG (2014) Nr 72 Vol 133 (), pp.89-100, DOI:10.1016/j.apenergy.2014.07.070, WOS:000342532400009
  6. Emmott, CJM; Rohr, JA; Campoy-Quiles, M; Kirchartz, T; Urbina, A; Ekins-Daukes, NJ; Nelson, J, Organic photovoltaic greenhouses: a unique application for semi-transparent PV?, ENERG ENVIRON SCI (2015) Nr 69 Vol 8 (4), pp.1317-1328, DOI:10.1039/c4ee03132f, WOS:000352275500020
  7. Krauter, S; Ruther, R, Considerations for the calculation of greenhouse gas reduction by photovoltaic solar energy, RENEW ENERG (2004) Nr 30 Vol 29 (3), pp.345-355, DOI:10.1016/S0960-1481(03)00251-9, WOS:000187714200004
  8. Vox, G; Teitel, M; Pardossi, A; Minuto, A; Tinivella, F; Schettini, E, SUSTAINABLE GREENHOUSE SYSTEMS, AGR ISSUES POLICIES (2010) Nr 234 Vol (), pp.1-79, DOI:, WOS:000278514700001
  9. Sonneueld, PJ; Swinkels, GLAM; Campen, J; van Tuijl, BAJ; Janssen, HJJ; Bot, GPA, Performance results of a solar greenhouse combining electrical and thermal energy production, BIOSYST ENG (2010) Nr 11 Vol 106 (1), pp.48-57, DOI:10.1016/j.biosystemseng.2010.02.003, WOS:000278244500005
  10. Hassanien, RHE; Li, M; Lin, WD, Advanced applications of solar energy in agricultural greenhouses, RENEW SUST ENERG REV (2016) Nr 138 Vol 54 (), pp.989-1001, DOI:10.1016/j.rser.2015.10.095, WOS:000367758200074
  11. Mahmoudi, H; Abdul-Wahab, SA; Goosen, MFA; Sablani, SS; Perret, J; Ouagued, A; Spahis, N, Weather data and analysis of hybrid photovoltaic – wind power generation systems adapted to a seawater greenhouse desalination unit designed for arid coastal countries, DESALINATION (2008) Nr 12 Vol 222 (43468), pp.119-127, DOI:10.1016/j.desal.2007.01.135, WOS:000254781100013
  12. Kadowaki, M; Yano, A; Ishizu, F; Tanaka, T; Noda, S, Effects of greenhouse photovoltaic array shading on Welsh onion growth, BIOSYST ENG (2012) Nr 29 Vol 111 (3), pp.290-297, DOI:10.1016/j.biosystemseng.2011.12.006, WOS:000301275500006
  13. Nayak, S; Tiwari, GM, Theoretical performance assessment of an integrated photovoltaic and earth air heat exchanger greenhouse using energy and exergy analysis methods, ENERG BUILDINGS (2009) Nr 23 Vol 41 (8), pp.888-896, DOI:10.1016/j.enbuild.2009.03.012, WOS:000267620300011
  14. Yano, A; Onoe, M; Nakata, J, Prototype semi-transparent photovoltaic modules for greenhouse roof applications, BIOSYST ENG (2014) Nr 29 Vol 122 (), pp.62-73, DOI:10.1016/j.biosystemseng.2014.04.003, WOS:000337859100006
  15. Shimoda, Y; Yamaguchi, Y; Okamura, T; Taniguchi, A; Yamaguchi, Y, Prediction of greenhouse gas reduction potential in Japanese residential sector by residential energy end-use model, APPL ENERG (2010) Nr 20 Vol 87 (6), pp.1944-1952, DOI:10.1016/j.apenergy.2009.10.021, WOS:000278306300017
  16. Louwen, A; van Sark, WGJHM; Faaij, APC; Schropp, REI, Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development, NAT COMMUN (2016) Nr 50 Vol 7 (), pp.-, DOI:10.1038/ncomms13728, WOS:000389180800001
  17. Cuce, E; Harjunowibowo, D; Cuce, PM, Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review, RENEW SUST ENERG REV (2016) Nr 193 Vol 64 (), pp.34-59, DOI:10.1016/j.rser.2016.05.077, WOS:000381833200003
  18. Yano, A; Kadowaki, M; Furue, A; Tamaki, N; Tanaka, T; Hiraki, E; Kato, Y; Ishizu, F; Noda, S, Shading and electrical features of a photovoltaic array mounted inside the roof of an east-west oriented greenhouse, BIOSYST ENG (2010) Nr 23 Vol 106 (4), pp.367-377, DOI:10.1016/j.biosystemseng.2010.04.007, WOS:000280900000005
  19. Perez-Alonso, J; Perez-Garcia, M; Pasamontes-Romera, M; Callejon-Ferre, AJ, Performance analysis and neural modelling of a greenhouse integrated photovoltaic system, RENEW SUST ENERG REV (2012) Nr 81 Vol 16 (7), pp.4675-4685, DOI:10.1016/j.rser.2012.04.002, WOS:000307909800036
  20. Yano, A; Furue, A; Kadowaki, M; Tanaka, T; Hiraki, E; Miyamoto, M; Ishizu, F; Noda, S, Electrical energy generated by photovoltaic modules mounted inside the roof of a north-south oriented greenhouse, BIOSYST ENG (2009) Nr 23 Vol 103 (2), pp.228-238, DOI:10.1016/j.biosystemseng.2009.02.020, WOS:000266860100012
  21. Ahiduzzaman, M; Islam, AKMS, Greenhouse gas emission and renewable energy sources for sustainable development in Bangladesh, RENEW SUST ENERG REV (2011) Nr 19 Vol 15 (9), pp.4659-4666, DOI:10.1016/j.rser.2011.07.086, WOS:000298764400044
  22. Bergesen, JD; Heath, GA; Gibon, T; Suh, S, Thin-Film Photovoltaic Power Generation Offers Decreasing Greenhouse Gas Emissions and Increasing Environmental Co-benefits in the Long Term, ENVIRON SCI TECHNOL (2014) Nr 75 Vol 48 (16), pp.9834-9843, DOI:10.1021/es405539z, WOS:000340701800107
  23. Nayak, S; Tiwari, GN, Energy metrics of photovoltaic/thermal and earth air heat exchanger integrated greenhouse for different climatic conditions of India, APPL ENERG (2010) Nr 28 Vol 87 (10), pp.2984-2993, DOI:10.1016/j.apenergy.2010.04.010, WOS:000280277800003
  24. Tiwari, S; Tiwari, GN; Al-Helal, IM, Performance analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer, SOL ENERGY (2016) Nr 24 Vol 133 (), pp.421-428, DOI:10.1016/j.solener.2016.04.033, WOS:000377733300036
  25. Reca, J; Torrente, C; Lopez-Luque, R; Martinez, J, Feasibility analysis of a standalone direct pumping photovoltaic system for irrigation in Mediterranean greenhouses, RENEW ENERG (2016) Nr 47 Vol 85 (), pp.1143-1154, DOI:10.1016/j.renene.2015.07.056, WOS:000363344800112
  26. Sgroi, F; Tudisca, S; Di Trapani, AM; Testa, R; Squatrito, R, Efficacy and Efficiency of Italian Energy Policy: The Case of PV Systems in Greenhouse Farms, ENERGIES (2014) Nr 63 Vol 7 (6), pp.3985-4001, DOI:10.3390/en7063985, WOS:000338557600028
  27. Ishii, S; Tabushi, S; Aramaki, T; Hanaki, K, Impact of future urban form on the potential to reduce greenhouse gas emissions from residential, commercial and public buildings in Utsunomiya, Japan, ENERG POLICY (2010) Nr 23 Vol 38 (9), pp.4888-4896, DOI:10.1016/j.enpol.2009.08.022, WOS:000279743500014
  28. Fatnassi, H; Poncet, C; Bazzano, MM; Brun, R; Berlin, N, A numerical simulation of the photovoltaic greenhouse microclimate, SOL ENERGY (2015) Nr 21 Vol 120 (), pp.575-584, DOI:10.1016/j.solener.2015.07.019, WOS:000362142100054
  29. Russo, G; Anifantis, AS; Verdiani, G; Mugnozza, GS, Environmental analysis of geothermal heat pump and LPG greenhouse heating systems, BIOSYST ENG (2014) Nr 68 Vol 127 (), pp.11-23, DOI:10.1016/j.biosystemseng.2014.08.002, WOS:000344431200002
  30. Yano, A; Tsuchiya, K; Nishi, K; Moriyama, T; Ide, O, Development of a greenhouse side-ventilation controller driven by photovoltaic energy, BIOSYST ENG (2007) Nr 20 Vol 96 (4), pp.633-641, DOI:10.1016/j.biosystemseng.2006.12.012, WOS:000245890600019
  31. Marucci, A; Monarca, D; Cecchini, M; Colantoni, A; Manzo, A; Cappuccini, A, The Semitransparent Photovoltaic Films for Mediterranean Greenhouse: A New Sustainable Technology, MATH PROBL ENG (2012) Nr 14 Vol (), pp.-, DOI:10.1155/2012/451934, WOS:000312843600001
  32. Marucci, A; Cappuccini, A, Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions, APPL ENERG (2016) Nr 73 Vol 170 (), pp.362-376, DOI:10.1016/j.apenergy.2016.02.138, WOS:000374601400033
  33. Reich, NH; Alsema, EA; van Sark, WGJHM; Turkenburg, WC; Sinke, WC, Greenhouse gas emissions associated with photovoltaic electricity from crystalline silicon modules under various energy supply options, PROG PHOTOVOLTAICS (2011) Nr 24 Vol 19 (5), pp.603-613, DOI:10.1002/pip.1066, WOS:000293273700013
  34. Norton, B; Eames, PC; Lo, SNG, Full-energy chain analysis of greenhouse gas emissions for solar thermal electric power generation systems, RENEW ENERG (1998) Nr 17 Vol 15 (43469), pp.131-136, DOI:10.1016/S0960-1481(98)00158-X, WOS:000076228900023
  35. Cossu, M; Yano, A; Li, Z; Onoe, M; Nakamura, H; Matsumoto, T; Nakata, J, Advances on the semi-transparent modules based on micro solar cells: First integration in a greenhouse system, APPL ENERG (2016) Nr 38 Vol 162 (), pp.1042-1051, DOI:10.1016/j.apenergy.2015.11.002, WOS:000367631000090
  36. Burtt, D; Dargusch, P, The cost-effectiveness of household photovoltaic systems in reducing greenhouse gas emissions in Australia: Linking subsidies with emission reductions, APPL ENERG (2015) Nr 81 Vol 148 (), pp.439-448, DOI:10.1016/j.apenergy.2015.03.091, WOS:000355063900041
  37. Yildiz, A; Ozgener, O; Ozgener, L, Exergetic performance assessment of solar photovoltaic cell (PV) assisted earth to air heat exchanger (EAHE) system for solar greenhouse cooling, ENERG BUILDINGS (2011) Nr 27 Vol 43 (11), pp.3154-3160, DOI:10.1016/j.enbuild.2011.08.013, WOS:000296550600024
  38. Hahn, F, Fuzzy controller decreases tomato cracking in greenhouses, COMPUT ELECTRON AGR (2011) Nr 28 Vol 77 (1), pp.21-27, DOI:10.1016/j.compag.2011.03.003, WOS:000292711500003
  39. Stadler, M; Siddiqui, A; Marnay, C; Aki, H; Lai, J, Control of greenhouse gas emissions by optimal DER technology investment and energy management in zero-net-energy buildings, EUR T ELECTR POWER (2011) Nr 19 Vol 21 (2), pp.1291-1309, DOI:10.1002/etep.418, WOS:000288855900010
  40. Breyer, C; Koskinen, O; Blechinger, P, Profitable climate change mitigation: The case of greenhouse gas emission reduction benefits enabled by solar photovoltaic systems, RENEW SUST ENERG REV (2015) Nr 120 Vol 49 (), pp.610-628, DOI:10.1016/j.rser.2015.04.061, WOS:000357141900049
  41. Braslavsky, JH; Wall, JR; Reedman, LJ, Optimal distributed energy resources and the cost of reduced greenhouse gas emissions in a large retail shopping centre, APPL ENERG (2015) Nr 38 Vol 155 (), pp.120-130, DOI:10.1016/j.apenergy.2015.05.085, WOS:000360950900010
  42. Carlini, M; Honorati, T; Castellucci, S, Photovoltaic Greenhouses: Comparison of Optical and Thermal Behaviour for Energy Savings, MATH PROBL ENG (2012) Nr 3 Vol (), pp.-, DOI:10.1155/2012/743764, WOS:000301424300001
  43. Tiwari, S; Tiwari, GN, Thermal analysis of photovoltaic-thermal (PVT) single slope roof integrated greenhouse solar dryer, SOL ENERGY (2016) Nr 33 Vol 138 (), pp.128-136, DOI:10.1016/j.solener.2016.09.014, WOS:000386410100013
  44. Marucci, A; Zambon, I; Colantoni, A; Monarca, D, A combination of agricultural and energy purposes: Evaluation of a prototype of photovoltaic greenhouse tunnel, RENEW SUST ENERG REV (2018) Nr 80 Vol 82 (), pp.1178-1186, DOI:10.1016/j.rser.2017.09.029, WOS:000417079400087
  45. Ylidiz, A; Ozgener, O; Ozgener, L, Energetic performance analysis of a solar photovoltaic cell (PV) assisted closed loop earth-to-air heat exchanger for solar greenhouse cooling: An experimental study for low energy architecture in Aegean Region, RENEW ENERG (2012) Nr 25 Vol 44 (), pp.281-287, DOI:10.1016/j.renene.2012.01.091, WOS:000302821800032
  46. Al-Ibrahim, A; Al-Abbadi, N; Al-Helal, I, PV greenhouse system – System description, performance and lesson learned, ACTA HORTIC (2006) Nr 16 Vol (710), pp.251-+, DOI:10.17660/ActaHortic.2006.710.26, WOS:000241003600026
  47. Anifantis, AS; Colantoni, A; Pascuzzi, S, Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating, RENEW ENERG (2017) Nr 34 Vol 103 (), pp.115-127, DOI:10.1016/j.renene.2016.11.031, WOS:000392769800011
  48. Tiwari, S; Tiwari, GN, Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer, ENERGY (2016) Nr 29 Vol 114 (), pp.155-164, DOI:10.1016/j.energy.2016.07.132, WOS:000387194800013
  49. Louwen, A; van Sark, WGJHM; Schropp, REI; Turkenburg, WC; Faaij, APC, Life-cycle greenhouse gas emissions and energy payback time of current and prospective silicon heterojunction solar cell designs, PROG PHOTOVOLTAICS (2015) Nr 51 Vol 23 (10), pp.1406-1428, DOI:10.1002/pip.2540, WOS:000362008600022
  50. Wang, TY; Wu, GX; Chen, JW; Cui, P; Chen, ZX; Yan, YY; Zhang, Y; Li, MC; Niu, DX; Li, BG; Chen, HY, Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect, RENEW SUST ENERG REV (2017) Nr 76 Vol 70 (), pp.1178-1188, DOI:10.1016/j.rser.2016.12.020, WOS:000396184900094
  51. Rocamora, MC; Tripanagnostopoulos, Y, Aspects of PV/T solar system application for ventilation needs in greenhouses, ACTA HORTIC (2006) Nr 26 Vol (719), pp.239-+, DOI:10.17660/ActaHortic.2006.719.26, WOS:000243532400026
  52. Hussain, MI; Ali, A; Lee, GH, Multi-module concentrated photovoltaic thermal system feasibility for greenhouse heating: Model validation and techno-economic analysis, SOL ENERGY (2016) Nr 33 Vol 135 (), pp.719-730, DOI:10.1016/j.solener.2016.06.053, WOS:000382793500073
  53. Zhai, Q; Cao, HJ; Zhao, X; Yuan, C, Assessing application potential of clean energy supply for greenhouse gas emission mitigation: a case study on General Motors global manufacturing, J CLEAN PROD (2014) Nr 41 Vol 75 (), pp.11-19, DOI:10.1016/j.jclepro.2014.03.072, WOS:000337860300002
  54. Kommalapati, R; Kadiyala, A; Shahriar, MT; Huque, Z, Review of the Life Cycle Greenhouse Gas Emissions from Different Photovoltaic and Concentrating Solar Power Electricity Generation Systems, ENERGIES (2017) Nr 39 Vol 10 (3), pp.-, DOI:10.3390/en10030350, WOS:000398736700090
  55. Poncet, C; Muller, MM; Brun, R; Fatnassi, H, Photovoltaic Greenhouses, Non-Sense or a Real Opportunity for the Greenhouse Systems?, ACTA HORTIC (2012) Nr 10 Vol 927 (), pp.75-79, DOI:, WOS:000304527500007
  56. Maher, A; Kamel, E; Enrico, F; Atif, I; Abdelkader, M, An intelligent system for the climate control and energy savings in agricultural greenhouses, ENERG EFFIC (2016) Nr 37 Vol 9 (6), pp.1241-1255, DOI:10.1007/s12053-015-9421-8, WOS:000385154300002
  57. Kristjansdottir, TF; Good, CS; Inman, MR; Schlanbusch, RD; Andresen, I, Embodied greenhouse gas emissions from PV systems in Norwegian residential Zero Emission Pilot Buildings, SOL ENERGY (2016) Nr 79 Vol 133 (), pp.155-171, DOI:10.1016/j.solener.2016.03.063, WOS:000377733300014
  58. Corrado, C; Leow, SW; Osborn, M; Carbone, I; Hellier, K; Short, M; Alers, G; Carter, SA, Power generation study of luminescent solar concentrator greenhouse, J RENEW SUSTAIN ENER (2016) Nr 24 Vol 8 (4), pp.-, DOI:10.1063/1.4958735, WOS:000383874000007
  59. Pascuzzi, S; Anifantis, AS; Blanco, I; Mugnozza, GS, Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study, SUSTAINABILITY-BASEL (2016) Nr 44 Vol 8 (7), pp.-, DOI:10.3390/su8070629, WOS:000380760400040
  60. Yang, F; Zhang, Y; Hao, YY; Cui, YX; Wang, WY; Ji, T; Shi, F; Wei, B, Visibly transparent organic photovoltaic with improved transparency and absorption based on tandem photonic crystal for greenhouse application, APPL OPTICS (2015) Nr 32 Vol 54 (34), pp.10232-10239, DOI:10.1364/AO.54.010232, WOS:000366604800030
  61. Loik, ME; Carter, SA; Alers, G; Wade, CE; Shugar, D; Corrado, C; Jokerst, D; Kitayama, C, Wavelength-Selective Solar Photovoltaic Systems: Powering Greenhouses for Plant Growth at the Food-Energy-Water Nexus, EARTHS FUTURE (2017) Nr 43 Vol 5 (10), pp.1044-1053, DOI:10.1002/2016EF000531, WOS:000415124900009
  62. Yildirim, N; Bilir, L, Evaluation of a hybrid system for a nearly zero energy greenhouse, ENERG CONVERS MANAGE (2017) Nr 41 Vol 148 (), pp.1278-1290, DOI:10.1016/j.enconman.2017.06.068, WOS:000410010000101
  63. Tiwari, S; Tiwari, GN, Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector, ENERGY (2017) Nr 36 Vol 128 (), pp.183-195, DOI:10.1016/j.energy.2017.04.022, WOS:000403987700016
  64. Marucci, A; Cappuccini, A, Dynamic photovoltaic greenhouse: Energy balance in completely clear sky condition during the hot period, ENERGY (2016) Nr 65 Vol 102 (), pp.302-312, DOI:10.1016/j.energy.2016.02.053, WOS:000375889400026
  65. Nayak, S; Kumar, A; Mishra, J; Tiwari, GN, Drying and Testing of Mint (Mentha piperita) by a Hybrid Photovoltaic-Thermal (PVT)-Based Greenhouse Dryer, DRY TECHNOL (2011) Nr 21 Vol 29 (9), pp.1002-1009, DOI:10.1080/07373937.2010.547265, WOS:000294803500002
  66. Roslan, N; Ya’acob, ME; Radzi, MAM; Hashimoto, Y; Jamaludin, D; Chen, G, Dye Sensitized Solar Cell (DSSC) greenhouse shading: New insights for solar radiation manipulation, RENEW SUST ENERG REV (2018) Nr 172 Vol 92 (), pp.171-186, DOI:10.1016/j.rser.2018.04.095, WOS:000437084300013
  67. Li, CS; Wang, HY; Miao, H; Ye, B, The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: Case study in China, APPL ENERG (2017) Nr 63 Vol 190 (), pp.204-212, DOI:10.1016/j.apenergy.2016.12.121, WOS:000395959100018
  68. Benatto, GAD; Corazza, M; Roth, B; Schutte, F; Rengenstein, M; Gevorgyan, SA; Krebs, FC, Inside or Outside? Linking Outdoor and Indoor Lifetime Tests of ITO-Free Organic Photovoltaic Devices for Greenhouse Applications, ENERGY TECHNOL-GER (2017) Nr 34 Vol 5 (2), pp.338-344, DOI:10.1002/ente.201600335, WOS:000395023000015
  69. Marchi, M; Pulselli, FM; Mangiavacchi, S; Menghetti, F; Marchettini, N; Bastianoni, S, The greenhouse gas inventory as a tool for planning integrated waste management systems: a case study in central Italy, J CLEAN PROD (2017) Nr 56 Vol 142 (), pp.351-359, DOI:10.1016/j.jclepro.2016.05.035, WOS:000391897300033
  70. Cossu, M; Ledda, L; Urracci, G; Sirigu, A; Cossu, A; Murgia, L; Pazzona, A; Yano, A, An algorithm for the calculation of the light distribution in photovoltaic greenhouses, SOL ENERGY (2017) Nr 66 Vol 141 (), pp.38-48, DOI:10.1016/j.solener.2016.11.024, WOS:000392892700004
  71. McHenry, MP, A technical, economic, and greenhouse gas emission analysis of a homestead-scale grid-connected and stand-alone photovoltaic and diesel systems, against electricity network extension, RENEW ENERG (2012) Nr 12 Vol 38 (1), pp.126-135, DOI:10.1016/j.renene.2011.07.020, WOS:000296416300014
  72. Campiotti, C; Dondi, F; Genovese, A; Alonzo, G; Catanese, V; Incrocci, L; Bibbiani, C, Photovoltaic as Sustainable Energy for Greenhouse and Closed Plant Production System, ACTA HORTIC (2008) Nr 15 Vol (797), pp.373-378, DOI:10.17660/ActaHortic.2008.797.53, WOS:000261541700053
  73. Castellano, S; Santamaria, P; Serio, F, Solar radiation distribution inside a monospan greenhouse with the roof entirely covered by photovoltaic panels, J AGRIC ENG (2016) Nr 37 Vol 47 (1), pp.1-6, DOI:10.4081/jae.2016.485, WOS:000375753900001
  74. Carlini, M; Villarini, M; Esposto, S; Bernardi, M, Performance Analysis of Greenhouses with Integrated Photovoltaic Modules, LECT NOTES COMPUT SC (2010) Nr 7 Vol 6017 (), pp.206-+, DOI:, WOS:000279383700017
  75. Souliotis, M; Tripanagnostopoulos, Y; Kavga, A, The use of Fresnel lenses to reduce the ventilation needs of greenhouses, ACTA HORTIC (2006) Nr 14 Vol (719), pp.107-+, DOI:10.17660/ActaHortic.2006.719.9, WOS:000243532400009
  76. Buttaro, D; Renna, M; Gerardi, C; Blando, F; Santamaria, P; Serio, F, SOILLESS PRODUCTION OF WILD ROCKET AS AFFECTED BY GREENHOUSE COVERAGE WITH PHOTOVOLTAIC MODULES, ACTA SCI POL-HORTORU (2016) Nr 44 Vol 15 (2), pp.129-142, DOI:, WOS:000375886700011
  77. Querini, F; Dagostino, S; Morel, S; Rousseaux, P, Greenhouse gas emissions of electric vehicles associated with wind and photovoltaic electricity, ENRGY PROCED (2012) Nr 30 Vol 20 (), pp.391-401, DOI:10.1016/j.egypro.2012.03.038, WOS:000309468500037
  78. De Luca, G; Fabozzi, S; Massarotti, N; Vanoli, L, A renewable energy system for a nearly zero greenhouse city: Case study of a small city in southern Italy, ENERGY (2018) Nr 38 Vol 143 (), pp.347-362, DOI:10.1016/j.energy.2017.07.004, WOS:000425565700028
  79. Carreno-Ortega, A; Galdeano-Gomez, E; Perez-Mesa, JC; Galera-Quiles, MD, Policy and Environmental Implications of Photovoltaic Systems in Farming in Southeast Spain: Can Greenhouses Reduce the Greenhouse Effect?, ENERGIES (2017) Nr 63 Vol 10 (6), pp.-, DOI:10.3390/en10060761, WOS:000404384000027
  80. Tiwari, S; Bhatti, J; Tiwari, GN; Al-Helal, IM, Thermal modelling of photovoltaic thermal (PVT) integrated greenhouse system for biogas heating, SOL ENERGY (2016) Nr 44 Vol 136 (), pp.639-649, DOI:10.1016/j.solener.2016.07.048, WOS:000383004200061
  81. Marucci, A; Monarca, D; Cecchini, M; Colantoni, A; Cappuccini, A, Analysis of internal shading degree to a prototype of dynamics photovoltaic greenhouse through simulation software, J AGRIC ENG (2015) Nr 56 Vol 46 (4), pp.144-150, DOI:10.4081/jae.2015.483, WOS:000370175800003
  82. Teitel, M; Montero, JI; Baeza, EJ, Greenhouse Design: Concepts and Trends, ACTA HORTIC (2012) Nr 49 Vol 952 (), pp.605-620, DOI:, WOS:000307442100077
  83. Saini, V; Tiwari, S; Tiwari, GN, Environ economic analysis of various types of photovoltaic technologies integrated with greenhouse solar drying system, J CLEAN PROD (2017) Nr 26 Vol 156 (), pp.30-40, DOI:10.1016/j.jclepro.2017.04.044, WOS:000403028500003
  84. Shyam; Al-Helal, IM; Singh, AK; Tiwari, GN, Performance evaluation of photovoltaic thermal greenhouse dryer and development of characteristic curve, J RENEW SUSTAIN ENER (2015) Nr 42 Vol 7 (3), pp.-, DOI:10.1063/1.4921408, WOS:000357684800010
  85. Kuo, YM; Fukushima, Y, Greenhouse Gas and Air Pollutant Emission Reduction Potentials of Renewable Energy-Case Studies on Photovoltaic and Wind Power Introduction Considering Interactions among Technologies in Taiwan, J AIR WASTE MANAGE (2009) Nr 12 Vol 59 (3), pp.360-372, DOI:10.3155/1047-3289.59.3.360, WOS:000263940200011
  86. Anifantis, AS; Colantoni, A; Pascuzzi, S; Santoro, F, Photovoltaic and Hydrogen Plant Integrated with a Gas Heat Pump for Greenhouse Heating: A Mathematical Study, SUSTAINABILITY-BASEL (2018) Nr 19 Vol 10 (2), pp.-, DOI:10.3390/su10020378, WOS:000425943100101
  87. Hassanien, RHE; Ming, L, Influences of greenhouse-integrated semi-transparent photovoltaics on microclimate and lettuce growth, INT J AGR BIOL ENG (2017) Nr 39 Vol 10 (6), pp.11-22, DOI:10.25165/j.ijabe.20171006.3407, WOS:000417884400002
  88. Motevali, A; Koloor, RT, A comparison between pollutants and greenhouse gas emissions from operation of different dryers based on energy consumption of power plants, J CLEAN PROD (2017) Nr 30 Vol 154 (), pp.445-461, DOI:10.1016/j.jclepro.2017.03.219, WOS:000401201900042
  89. Diaz-Mendez, R; Rasheed, A; Peillon, M; Perdigones, A; Sanchez, R; Tarquis, AM; Garcia-Fernandez, JL, Wind pumps for irrigating greenhouse crops: Comparison in different socio-economical frameworks, BIOSYST ENG (2014) Nr 25 Vol 128 (), pp.21-28, DOI:10.1016/j.biosystemseng.2014.08.013, WOS:000346954300004
  90. Bristow, D; Richman, R; Kirsh, A; Kennedy, CA; Pressnail, KD, Hour-by-Hour Analysis for Increased Accuracy of Greenhouse Gas Emissions for a Low-Energy Condominium Design, J IND ECOL (2011) Nr 25 Vol 15 (3), pp.381-393, DOI:10.1111/j.1530-9290.2011.00335.x, WOS:000291222200006
  91. Martinez, P; Dawidowski, L; Gomez, D; Pasquevich, D, Life cycle greenhouse emissions of compressed natural gas-hydrogen mixtures for transportation in Argentina, INT J HYDROGEN ENERG (2010) Nr 16 Vol 35 (11), pp.5793-5798, DOI:10.1016/j.ijhydene.2010.02.097, WOS:000278967900073
  92. Sonneveld, PJ; Swinkels, GLAM; Bot, GPA, Design of a Solar Greenhouse with Energy Delivery by the Conversion of Near Infrared Radiation – Part 1 Optics and PV-cells, ACTA HORTIC (2009) Nr 10 Vol 807 (), pp.47-53, DOI:, WOS:000305334500002
  93. Scaranari, C; Leal, PAM; Pellegrino, GQ, SIMULATIONS OF MICROCLIMATE IN GREENHOUSES AIMING THE ACCLIMATIZATION OF MICROPROPAGATED SEEDLINGS OF BANANA CV. GRANDE NAINE, REV BRAS FRUTIC (2008) Nr 22 Vol 30 (4), pp.1001-1008, DOI:10.1590/S0100-29452008000400027, WOS:000262493700027
  94. Romantchik, E; Rios, E; Sanchez, E; Lopez, I; Sanchez, JR, Determination of energy to be supplied by photovoltaic systems for fan-pad systems in cooling process of greenhouses, APPL THERM ENG (2017) Nr 23 Vol 114 (), pp.1161-1168, DOI:10.1016/j.applthermaleng.2016.10.011, WOS:000395725400111
  95. Kaufmann, RK; Vaid, D, Lower electricity prices and greenhouse gas emissions due to rooftop solar: empirical results for Massachusetts, ENERG POLICY (2016) Nr 28 Vol 93 (), pp.345-352, DOI:10.1016/j.enpol.2016.03.006, WOS:000375363800036
  96. Vadiee, A; Yaghoubi, M, Exergy Analysis of the Solar Blind System integrated with a Commercial Solar Greenhouse, INT J RENEW ENERGY R (2016) Nr 25 Vol 6 (3), pp.1189-1199, DOI:, WOS:000390948900046
  97. Wetzel, T; Borchers, S, Update of energy payback time and greenhouse gas emission data for crystalline silicon photovoltaic modules, PROG PHOTOVOLTAICS (2015) Nr 19 Vol 23 (10), pp.1429-1435, DOI:10.1002/pip.2548, WOS:000362008600023
  98. Juang, P; Kacira, M, System Dynamics of a Photovoltaic Integrated Greenhouse, ACTA HORTIC (2014) Nr 10 Vol 1037 (), pp.107-112, DOI:, WOS:000357373600009
  99. Nakoul, Z; Bibi-Triki, N; Kherrous, A; Bessenouci, MZ; Khelladi, S, Optimization of a solar photovoltaic applied to greenhouses, PHYSCS PROC (2014) Nr 9 Vol 55 (), pp.383-389, DOI:10.1016/j.phpro.2014.07.055, WOS:000393466400055
  100. Chemisana, D; Lamnatou, C; Tripanagnostopoulos, Y, The Effect of Fresnel Lens – Solar Absorber Systems in Greenhouses, ACTA HORTIC (2012) Nr 21 Vol 952 (), pp.425-432, DOI:, WOS:000307442100053
  101. Mutasher, SA; Mir-Nasiri, N; Wong, SY; Ngoo, KC; Wong, LY, Improving a conventional greenhouse solar still using sun tracking system to increase clean water yield, DESALIN WATER TREAT (2010) Nr 13 Vol 24 (43468), pp.140-149, DOI:10.5004/dwt.2010.1473, WOS:000286012100018
  102. Davies, PA; Hossain, AK, Development of an integrated reverse osmosis-greenhouse system driven by solar photovoltaic generators, DESALIN WATER TREAT (2010) Nr 19 Vol 22 (43468), pp.161-173, DOI:10.5004/dwt.2010.1393, WOS:000283996900021
  103. Barnwal, P; Tiwari, A, Thermodynamic performance analysis of a hybrid Photovoltaic-Thermal (PV/T) integrated greenhouse air heater and dryer, INT J EXERGY (2009) Nr 34 Vol 6 (1), pp.111-130, DOI:10.1504/IJEX.2009.023348, WOS:000264646100008
  104. Sonneveld, PJ; Holterman, HJ; Swinkels, GLM; van Tuiji, BAJ; Bot, GPA, Solar Energy Delivering Greenhouse with an Integrated NIR Filter, ACTA HORTIC (2008) Nr 11 Vol (801), pp.703-710, DOI:10.17660/ActaHortic.2008.801.81, WOS:000263190000081
  105. Kim, HC; Fthenakis, VM, Life cycle energy demand and greenhouse gas emissions from an Amonix high concentrator photovoltaic system, WORL CON PHOTOVOLT E (2006) Nr 14 Vol (), pp.628-631, DOI:, WOS:000241251600160
  106. Tripanagnostopoulos, Y; Souliotis, M; Tonui, JK; Kavga, A, Irradiation aspects for energy balance in greenhouses, ACTA HORTIC (2005) Nr 28 Vol (691), pp.733-740, DOI:10.17660/ActaHortic.2005.691.90, WOS:000233798600090
  107. Harjunowibowo, D; Ding, YT; Omer, S; Riffat, S, RECENT ACTIVE TECHNOLOGIES OF GREENHOUSE SYSTEMS – A COMPREHENSIVE REVIEW, BULG J AGRIC SCI (2018) Nr 92 Vol 24 (1), pp.158-170, DOI:, WOS:000428269800022
  108. Marucci, A; Monarca, D; Colantoni, A; Campiglia, E; Cappuccini, A, Analysis of the internal shading in a photovoltaic greenhouse tunnel, J AGRIC ENG (2017) Nr 25 Vol 48 (3), pp.154-160, DOI:10.4081/jae.2017.622, WOS:000411492500004
  109. Wu, PS; Ma, XM; Ji, JP; Ma, YR, Review on life cycle assessment of greenhouse gas emission profit of solar photovoltaic systems, ENRGY PROCED (2017) Nr 28 Vol 105 (), pp.1289-1294, DOI:10.1016/j.egypro.2017.03.460, WOS:000404967901058
  110. Bulgari, R; Cola, G; Ferrante, A; Franzoni, G; Mariani, L; Martinetti, L, Micrometeorological environment in traditional and photovoltaic greenhouses and effects on growth and quality of tomato (Solanum lycopersicum L.), ITAL J AGROMETEOROL (2015) Nr 40 Vol 20 (2), pp.27-38, DOI:, WOS:000359961100003
  111. Marucci, A; Monarca, D; Cecchini, M; Colantoni, A; Allegrini, E; Cappuccini, A, Use of Semi-transparent Photovoltaic Films as Shadowing Systems in Mediterranean Greenhouses, LECT NOTES COMPUT SC (2013) Nr 14 Vol 7972 (), pp.231-241, DOI:, WOS:000335143000018
  112. Pekoslawski, B; Krasinski, P; Siedlecki, M; Napieralski, A, Autonomous Wireless Sensor Network for Greenhouse Environmental Conditions Monitoring, (2013) Nr 18 Vol  (), pp.503-507, DOI:, WOS:000399863600090
  113. Martinez, PE; Pasquevich, DM; Eliceche, AM, Operation of a national electricity network to minimize life cycle greenhouse gas emissions and cost, INT J HYDROGEN ENERG (2012) Nr 32 Vol 37 (19), pp.14786-14795, DOI:10.1016/j.ijhydene.2012.01.174, WOS:000309493600104
  114. Li, Z; Yano, A; Cossu, M; Yoshioka, H; Kita, I; Ibaraki, Y, Electrical Energy Producing Greenhouse Shading System with a Semi-Transparent Photovoltaic Blind Based on Micro-Spherical Solar Cells, ENERGIES (2018) Nr 78 Vol 11 (7), pp.-, DOI:10.3390/en11071681, WOS:000441830500065
  115. Li, Z; Yano, A; Cossu, M; Yoshioka, H; Kita, I; Ibaraki, Y, Shading and electric performance of a prototype greenhouse blind system based on semi-transparent photovoltaic technology, J AGRIC METEOROL (2018) Nr 48 Vol 74 (3), pp.114-122, DOI:10.2480/agrmet.D-17-00047, WOS:000438556100004
  116. Barbera, E; Sforza, E; Vecchiato, L; Bertucco, A, Energy and economic analysis of microalgae cultivation in a photovoltaic-assisted greenhouse: Scenedesmus obliquus as a case study, ENERGY (2017) Nr 30 Vol 140 (), pp.116-124, DOI:10.1016/j.energy.2017.08.069, WOS:000415394200014
  117. Tiwari, S; Tiwari, GN, Thermal analysis of photovoltaic thermal integrated greenhouse system (PVTIGS) for heating of slurry in potable biogas plant: An experimental study, SOL ENERGY (2017) Nr 31 Vol 155 (), pp.203-211, DOI:10.1016/j.solener.2017.06.021, WOS:000419538500021
  118. Xue, JL, Economic assessment of photovoltaic greenhouses in China, J RENEW SUSTAIN ENER (2017) Nr 17 Vol 9 (3), pp.-, DOI:10.1063/1.4982748, WOS:000404600700011
  119. Vadiee, A; Yaghoubi, M, Enviro-economic assessment of energy conservation methods in commercial greenhouses in Iran, OUTLOOK AGR (2016) Nr 21 Vol 45 (1), pp.47-53, DOI:10.5367/oa.2016.0232, WOS:000375698800007
  120. Castellano, S; Santamaria, P; Serio, F, PHOTOSYNTHETIC PHOTON FLUX DENSITY DISTRIBUTION INSIDE PHOTOVOLTAIC GREENHOUSES, NUMERICAL SIMULATION, AND EXPERIMENTAL RESULTS, APPL ENG AGRIC (2016) Nr 37 Vol 32 (6), pp.861-869, DOI:10.13031/aea.32.11544, WOS:000391941100018
  121. Alonso, A; Brook, BW; Meneley, DA; Misak, J; Blees, T; van Erp, JB, Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates, EPJ NUCL SCI TECHNOL (2015) Nr 14 Vol 1 (), pp.-, DOI:10.1051/epjn/e2015-50027-y, WOS:000218364800004
  122. Balas, MM, Seven Passive Greenhouse Synergies, ACTA POLYTECH HUNG (2014) Nr 11 Vol 11 (4), pp.199-210, DOI:, WOS:000336555700013
  123. Sonneveld, PJ; Swinkels, GLAM; van Tuijl, BAJ; Janssen, H, Design of a NIR-Concentrator System Integrated in a Greenhouse, ACTA HORTIC (2012) Nr 6 Vol 952 (), pp.523-529, DOI:, WOS:000307442100066
  124. Davies, PA; Hossain, AK; Vasudevan, P, Stand-alone groundwater desalination system using reverse osmosis combined with a cooled greenhouse for use in arid and semi-arid zones of India, DESALIN WATER TREAT (2009) Nr 24 Vol 5 (43468), pp.223-234, DOI:10.5004/dwt.2009.520, WOS:000267309400033
  125. Subhani, WS; Wang, K; Du, MY; Wang, XL; Yuan, NY; Ding, JN; Liu, SZ, Anti-solvent engineering for efficient semitransparent CH3NH3PbBr3 perovskite solar cells for greenhouse applications, J ENERGY CHEM (2019) Nr 58 Vol 34 (), pp.12-19, DOI:10.1016/j.jechem.2018.10.001, WOS:000473219600003
  126. Liu, D; Liu, JC; Wang, SK; Xu, M; Akbar, SJ, Contribution of international photovoltaic trade to global greenhouse gas emission reduction: the example of China, RESOUR CONSERV RECY (2019) Nr 28 Vol 143 (), pp.114-118, DOI:10.1016/j.resconrec.2018.12.015, WOS:000458222600013
  127. Tiwari, S; Agrawal, S; Tiwari, GN, PVT air collector integrated greenhouse dryers, RENEW SUST ENERG REV (2018) Nr 89 Vol 90 (), pp.142-159, DOI:10.1016/j.rser.2018.03.043, WOS:000434917700012
  128. Li, XF; Strezov, V, Energy and Greenhouse Gas Emission Assessment of Conventional and Solar Assisted Air Conditioning Systems, SUSTAINABILITY-BASEL (2015) Nr 24 Vol 7 (11), pp.14710-14728, DOI:10.3390/su71114710, WOS:000369088600017
  129. Sdringola, P; Proietti, S; Desideri, U; Giombini, G, Thermo-fluid dynamic modeling and simulation of a bioclimatic solar greenhouse with self-cleaning and photovoltaic glasses, ENERG BUILDINGS (2014) Nr 31 Vol 68 (), pp.183-195, DOI:10.1016/j.enbuild.2013.08.011, WOS:000329885300021
  130. Kuo, YC; Chiang, CM; Chou, PC; Chen, HJ; Lee, CY; Chan, CC, Applications of Building Integrated Photovoltaic Modules in a Greenhouse of Northern Taiwan, J BIOBASED MATER BIO (2012) Nr 18 Vol 6 (6), pp.721-727, DOI:10.1166/jbmb.2012.1297, WOS:000317250100025
  131. Adeoti, O; Osho, SO, Opportunities to reduce greenhouse gas emissions from households in Nigeria, MITIG ADAPT STRAT GL (2012) Nr 90 Vol 17 (2), pp.133-152, DOI:10.1007/s11027-011-9317-7, WOS:000300588700002
  132. Sonneveld, P; Zahn, H; Swinkels, GJ, A CPV System with Static Linear Fresnel Lenses in a Greenhouse, AIP CONF PROC (2010) Nr 6 Vol 1277 (), pp.264-+, DOI:10.1063/1.3509207, WOS:000287123900062
  133. Miller, I; Gencer, E; Vogelbaum, HS; Brown, PR; Torkamani, S; O’Sullivan, FM, Parametric modeling of life cycle greenhouse gas emissions from photovoltaic power, APPL ENERG (2019) Nr 43 Vol 238 (), pp.760-774, DOI:10.1016/j.apenergy.2019.01.012, WOS:000461262300055
  134. Davies, PA; Zaragoza, G, Ideal performance of a self-cooling greenhouse, APPL THERM ENG (2019) Nr 54 Vol 149 (), pp.502-511, DOI:10.1016/j.applthermaleng.2018.12.056, WOS:000460492300044
  135. Mahdavi, S; Sarhaddi, F; Hedayatizadeh, M, Energy/exergy based-evaluation of heating/cooling potential of PV/T and earth-air heat exchanger integration into a solar greenhouse, APPL THERM ENG (2019) Nr 23 Vol 149 (), pp.996-1007, DOI:10.1016/j.applthermaleng.2018.12.109, WOS:000460492300087
  136. Bambara, J; Athienitis, AK, Energy and economic analysis for the design of greenhouses with semi-transparent photovoltaic cladding, RENEW ENERG (2019) Nr 62 Vol 131 (), pp.1274-1287, DOI:10.1016/j.renene.2018.08.020, WOS:000449892600110
  137. Shi, H; Xia, RX; Zhang, GC; Yip, HL; Cao, Y, Spectral Engineering of Semitransparent Polymer Solar Cells for Greenhouse Applications, ADV ENERGY MATER (2019) Nr 43 Vol 9 (5), pp.-, DOI:10.1002/aenm.201803438, WOS:000459624100012
  138. Gao, Y; Dong, JF; Isabella, O; Santbergen, R; Tan, HR; Zeman, M; Zhang, GQ, Modeling and analyses of energy performances of photovoltaic greenhouses with sun-tracking functionality, APPL ENERG (2019) Nr 35 Vol 233 (), pp.424-442, DOI:10.1016/j.apenergy.2018.10.019, WOS:000454376900035
  139. Ezzaeri, K; Fatnassi, H; Bouharroud, R; Gourdo, L; Bazgaou, A; Wifaya, A; Demrati, H; Bekkaoui, A; Aharoune, A; Poncet, C; Bouirden, L, The effect of photovoltaic panels on the microclimate and on the tomato production under photovoltaic canarian greenhouses, SOL ENERGY (2018) Nr 44 Vol 173 (), pp.1126-1134, DOI:10.1016/j.solener.2018.08.043, WOS:000452940800109
  140. Gomes, V; Saade, M; Lima, B; Silva, M, Exploring lifecycle energy and greenhouse gas emissions of a case study with ambitious energy compensation goals in a cooling-dominated climate, ENERG BUILDINGS (2018) Nr 52 Vol 173 (), pp.302-314, DOI:10.1016/j.enbuild.2018.04.063, WOS:000442173200026
  141. Wang, JC; Liao, MS; Lee, YC; Liu, CY; Kuo, KC; Chou, CY; Huang, CK; Jiang, JA, On enhancing energy harvesting performance of the photovoltaic modules using an automatic cooling system and assessing its economic benefits of mitigating greenhouse effects on the environment, J POWER SOURCES (2018) Nr 40 Vol 376 (), pp.55-65, DOI:10.1016/j.jpowsour.2017.11.051, WOS:000419810700008
  142. Blando, F; Gerardi, C; Renna, M; Castellano, S; Serio, F, Characterisation of bioactive compounds in berries from plants grown under innovative photovoltaic greenhouses, J BERRY RES (2018) Nr 52 Vol 8 (1), pp.55-69, DOI:10.3233/JBR-170258, WOS:000432293300005
  143. Dubinsky, J; Karunanithi, AT, Greenhouse Gas Accounting of Rural Agrarian Regions: The Case of San Luis Valley, ACS SUSTAIN CHEM ENG (2017) Nr 62 Vol 5 (1), pp.261-268, DOI:10.1021/acssuschemeng.6b01424, WOS:000391246000029
  144. Hadjaissa, A; Ameur, K; Cheikh, MSA; Essounbouli, N, A PSO-BASED OPTIMIZATION OF A FUZZY-BASED MPPT CONTROLLER FOR A PHOTOVOLTAIC PUMPING SYSTEM USED FOR IRRIGATION OF GREENHOUSES, IRAN J FUZZY SYST (2016) Nr 9 Vol 13 (3), pp.1-18, DOI:, WOS:000378918800001
  145. Rasheed, A; Lee, JW; Lee, HW, Feasibility Evaluation of the Wind Energy as an Alternative Energy Source for the Irrigation of Greenhouse Crops, INT J RENEW ENERGY R (2016) Nr 30 Vol 6 (4), pp.1545-1555, DOI:, WOS:000390952400039
  146. Schmack, M; Ho, G; Anda, M, The Bubble-Greenhouse: A holistic sustainable approach to small-scale water desalination in remote regions, DESALINATION (2015) Nr 61 Vol 365 (), pp.250-260, DOI:10.1016/j.desal.2015.03.021, WOS:000354505000029
  147. Fatnassi, H; Poncet, C; Brun, R; Muller, MM; Bertin, N, CFD Study of Climate Conditions under Greenhouses Equipped with Photovoltaic Panels, ACTA HORTIC (2014) Nr 8 Vol 1054 (), pp.63-72, DOI:, WOS:000357663400006
  148. Kim, H; Tenreiro, C; Ahn, TK, 2D representation of life cycle greenhouse gas emission and life cycle cost of energy conversion for various energy resources, KOREAN J CHEM ENG (2013) Nr 15 Vol 30 (10), pp.1882-1888, DOI:10.1007/s11814-013-0121-9, WOS:000325237400008
  149. Ozgener, O; Ozgener, L, THREE COOLING SEASONS MONITORING OF ENERGETIC PERFORMANCE ANALYSIS OF AN EAHE (EARTH TO AIR HEAT EXCHANGER) ASSISTED SOLAR GREENHOUSE BUILDING, J GREEN BUILD (2013) Nr 17 Vol 8 (2), pp.153-161, DOI:10.3992/jgb.8.2.153, WOS:000322718100010
  150. Sonneveld, PJ; Swinkels, GLAM; van Tuijl, BAJ; Janssen, H; Bot, GPA, Greenhouse with a CPV System Based on NIR Reflecting Lamellae, ACTA HORTIC (2012) Nr 6 Vol 927 (), pp.43-50, DOI:, WOS:000304527500003
  151. Ganguly, A; Ghosh, S, Performance Analysis of a Floriculture Greenhouse Powered by Integrated Solar Photovoltaic Fuel Cell System, J SOL ENERG-T ASME (2011) Nr 21 Vol 133 (4), pp.-, DOI:10.1115/1.4004036, WOS:000298008200001
  152. Perez-Alonso, J; Callejon-Ferre, AJ; Urena-Sanchez, R; Carreno-Ortega, A; Vazquez-Cabrera, FJ; Perez-Garcia, M; Marti, BV, PAR assessment within an Almeria-type greenhouse in integrating a photovoltaic roof, VDI BERICHT (2011) Nr 18 Vol 2124 (), pp.343-+, DOI:, WOS:000339411500051
  153. Sonneveld, PJ; Swinkels, GLAM; van Tuijl, BAJ; Janssen, HJJ; Gieling, TH, A Fresnel Lenses Based Concentrated PV System in a Greenhouse, ACTA HORTIC (2011) Nr 5 Vol (893), pp.343-350, DOI:10.17660/ActaHortic.2011.893.30, WOS:000305385800030
  154. Barnwal, P; Tiwari, GN, Experimental Validation of Hybrid Photovoltaic-Thermal (PV/T) Greenhouse Dryer under Forced Mode, INT J FOOD ENG (2010) Nr 54 Vol 6 (6), pp.-, DOI:10.2202/1556-3758.1451, WOS:000286894800001
  155. Davies, PA; Hossain, AK; Lychnos, G; Paton, C, Energy Saving and Solar Electricity in Fan-Ventilated Greenhouses, ACTA HORTIC (2008) Nr 9 Vol (797), pp.339-+, DOI:10.17660/ActaHortic.2008.797.48, WOS:000261541700048
  156. Al-Helal, I; Al-Abbadi, N; Al-Ibrahim, A, A study of evaporative cooling pad performance for a photovoltaic powered greenhouse, ACTA HORTIC (2006) Nr 8 Vol (710), pp.153-+, DOI:10.17660/ActaHortic.2006.710.14, WOS:000241003600014
  157. CARLSON, DE, FOSSIL-FUELS, THE GREENHOUSE-EFFECT AND PHOTOVOLTAICS, IEEE PHOT SPEC CONF (1988) Nr 0 Vol (), pp.1-7, DOI:10.1109/PVSC.1988.105649, WOS:A1988BP96T00001
  158. Mousa, OB; Kara, S; Taylor, RA, Comparative energy and greenhouse gas assessment of industrial rooftop-integrated PV and solar thermal collectors, APPL ENERG (2019) Nr 69 Vol 241 (), pp.113-123, DOI:10.1016/j.apenergy.2019.03.052, WOS:000465509500010
  159. Zhuang, P; Liang, H; Pomphrey, M, Stochastic Multi-Timescale Energy Management of Greenhouses With Renewable Energy Sources, IEEE T SUSTAIN ENERG (2019) Nr 37 Vol 10 (2), pp.905-917, DOI:10.1109/TSTE.2018.2854662, WOS:000462375900040
  160. Kavga, A; Strati, IF; Sinanoglou, VJ; Fotakis, C; Sotiroudis, G; Christodoulou, P; Zoumpoulakis, P, Evaluating the experimental cultivation of peppers in low-energy-demand greenhouses. An interdisciplinary study, J SCI FOOD AGR (2019) Nr 43 Vol 99 (2), pp.781-789, DOI:10.1002/jsfa.9246, WOS:000453912300033
  161. Cossu, M; Cossu, A; Deligios, PA; Ledda, L; Li, Z; Fatnassi, H; Poncet, C; Yano, A, Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe, RENEW SUST ENERG REV (2018) Nr 107 Vol 94 (), pp.822-834, DOI:10.1016/j.rser.2018.06.001, WOS:000446310000061
  162. Jones, C; Gilbert, P, Determining the consequential life cycle greenhouse gas emissions of increased rooftop photovoltaic deployment, J CLEAN PROD (2018) Nr 38 Vol 184 (), pp.211-219, DOI:10.1016/j.jclepro.2018.02.140, WOS:000430779600019
  163. Heal, G, Reflections-What Would It Take to Reduce US Greenhouse Gas Emissions 80 Percent by 2050?, REV ENV ECON POLICY (2017) Nr 34 Vol 11 (2), pp.319-335, DOI:10.1093/reep/rex014, WOS:000407811000009
  164. Ariffin, MR; Shafie, S; Hassan, WZW; Azis, N; Ya’acob, ME Othman, ML; Abdrahman, F; Kamsani, NA; Fauzi, MFA, Conceptual Design of Hybrid Photovoltaic-Thermoelectric Generator (PV/TEG) for Automated Greenhouse System, IEEE ST CONF RES DEV (2017) Nr 22 Vol (), pp.309-314, DOI:, WOS:000464411500059
  165. Castellano, S; Tsirogiannis, IL, DAYLIGHT ANALYSIS INSIDE PHOTOVOLTAIC GREENHOUSES, ACT TASKS AGRIC ENG (2015) Nr 19 Vol 43 (), pp.703-712, DOI:, WOS:000373450700065
  166. Khaled, A; Boubakeur, H; Essounbouli, N; Ait-cheikh, SM; Cheknane, A, Improvement of a photovoltaic pumping system for irrigation of greenhouses Case study for Laghouat, Algeria, (2015) Nr 6 Vol  (), pp.-, DOI:, WOS:000380433000027
  167. Perez-Alonso, J; Callejon-Ferre, A; Perez-Garcia, M; Sanchez-Hermosilla, J, Evaluation of the tomato crop production under exterior selective shading in “raspa y amagado” greenhouses, (2014) Nr 14 Vol  (), pp.470-475, DOI:, WOS:000376620800080
  168. Davies, PA; Srivastava, RK; Kaphaliya, B; Hossain, AK; Igobo, ON; Garantziotis, G, A greenhouse integrating desalination, water saving and rainwater harvesting for use in salt-affected inland regions, J SCI IND RES INDIA (2011) Nr 8 Vol 70 (8), pp.628-633, DOI:, WOS:000294702500012
  169. Bastien, D; Athienitis, AK, Transient Analysis of Earth-to-Air Heat Exchanger for a Home-Scale Greenhouse, ACTA HORTIC (2011) Nr 7 Vol (893), pp.477-484, DOI:10.17660/ActaHortic.2011.893.47, WOS:000305385800047
  170. Campiotti, C; Dondi, F; Di Carlo, F; Scoccianti, M; Alonzo, G; Bibbiani, C; Incrocci, L, Preliminary Results of a PV Closed Greenhouse System for High Irradiation Zones in South Italy, ACTA HORTIC (2011) Nr 14 Vol (893), pp.243-250, DOI:, WOS:000305385800018
  171. Sonneveld, PJ; Swinkels, GLAM; van Tuijl, BAJ; Janssen, HJJ; de Zwart, HF, Static Linear Fresnel Lenses as LCPV System in a Greenhouse, AIP CONF PROC (2011) Nr 6 Vol 1407 (), pp.-, DOI:10.1063/1.3658317, WOS:000301983900036
  172. Bizzarri, G; Morini, GL, Greenhouse gas reductions and primary energy savings via adoption of hybrid plants in place of conventional ones, ADV AIR POLLUT SER (2004) Nr 8 Vol 14 (), pp.327-337, DOI:, WOS:000223848900033
  173. Krauter, S, Greenhouse gas reduction by PV, WORL CON PHOTOVOLT E (2003) Nr 18 Vol (), pp.2610-2613, DOI:, WOS:000222658800661
  174. Hollingsworth, JA; Ravishankar, E; O’Connor, B; Johnson, JX; DeCarolis, JF, Environmental and economic impacts of solar-powered integrated greenhouses, J IND ECOL () Nr 56 Vol (), pp.-, DOI:10.1111/jiec.12934, WOS:000481266000001
  175. Farfan, J; Lohrmann, A; Breyer, C, Integration of greenhouse agriculture to the energy infrastructure as an alimentary solution, RENEW SUST ENERG REV (2019) Nr 109 Vol 110 (), pp.368-377, DOI:10.1016/j.rser.2019.04.084, WOS:000468746300027
  176. Peretz, MF; Geoola, F; Yehia, I; Ozer, S; Levi, A; Magadley, E; Brikman, R; Rosenfeld, L; Levy, A; Kacira, M; Teitel, M, Testing organic photovoltaic modules for application as greenhouse cover or shading element, BIOSYST ENG (2019) Nr 45 Vol 184 (), pp.24-36, DOI:10.1016/j.biosystemseng.2019.05.003, WOS:000477685900002
  177. Yoo, SH, Optimization of a BIPV system to mitigate greenhouse gas and indoor environment, SOL ENERGY (2019) Nr 23 Vol 188 (), pp.875-882, DOI:10.1016/j.solener.2019.06.055, WOS:000482532700085
  178. Moretti, S; Marucci, A, A Photovoltaic Greenhouse with Variable Shading for the Optimization of Agricultural and Energy Production, ENERGIES (2019) Nr 63 Vol 12 (13), pp.-, DOI:10.3390/en12132589, WOS:000477034700128
  179. Yano, A; Cossu, M, Energy sustainable greenhouse crop cultivation using photovoltaic technologies, RENEW SUST ENERG REV (2019) Nr 240 Vol 109 (), pp.116-137, DOI:10.1016/j.rser.2019.04.026, WOS:000467752400008
  180. Ntinas, GK; Kadoglidou, K; Tsivelika, N; Krommydas, K; Kalivas, A; Ralli, P; Irakli, M, Performance and Hydroponic Tomato Crop Quality Characteristics in a Novel Greenhouse Using Dye-Sensitized Solar Cell Technology for Covering Material, HORTICULTURAE (2019) Nr 28 Vol 5 (2), pp.-, DOI:10.3390/horticulturae5020042, WOS:000474247700016
  181. Mostefaoui, Z; Amara, S, Renewable energy analysis in the agriculture-greenhouse farms: A case study in the mediterranean region (sidi bel abbes, algeria), ENVIRON PROG SUSTAIN (2019) Nr 20 Vol 38 (3), pp.-, DOI:10.1002/ep.13029, WOS:000469045900011
  182. Zhao, FY; Sun, JL; Yu, SL; Liu, HF; Yu, K, Aeration Irrigation Can Improve Growth of Table Grape cv. Red Globe (Vitis vinifera L.) in Greenhouse, HORTSCIENCE (2019) Nr 38 Vol 54 (4), pp.732-737, DOI:10.21273/HORTSCI13732-18, WOS:000469237500023
  183. Campiotti, CA; Bibbiani, C; Greco, C, RENEWABLE ENERGY FOR GREENHOUSE AGRICULTURE, QUAL-ACCESS SUCCESS (2019) Nr 9 Vol 20 (), pp.152-156, DOI:, WOS:000461854800022
  184. Gonzalez-Mahecha, RE; Lucena, AFP; Garaffa, R; Miranda, RFC; Chavez-Rodriguez, M; Cruz, T; Bezerra, P; Rathmann, R, Greenhouse gas mitigation potential and abatement costs in the Brazilian residential sector, ENERG BUILDINGS (2019) Nr 76 Vol 184 (), pp.19-33, DOI:10.1016/j.enbuild.2018.11.039, WOS:000457505700003
  185. Sergeev, A; Hewitt, A; Hier, H; Waits, CM; Steiner, MA; Sablon, K, Greenhouse Effect in Photovoltaic Cells to Enhance Efficiency of Power Beam Conversion, MRS ADV (2019) Nr 13 Vol 4 (16), pp.897-903, DOI:10.1557/adv.2018.658, WOS:000467262800001
  186. Singh, G; Jain, VK; Singh, A, Adaptive network architecture and firefly algorithm for biogas heating model aided by photovoltaic thermal greenhouse system, ENERG ENVIRON-UK (2018) Nr 37 Vol 29 (7), pp.1073-1097, DOI:10.1177/0958305X18768819, WOS:000450337600001
  187. Armendariz-Lopez, JF; Arena-Granados, AP; Gonzalez-Trevizo, ME; Luna-Leon, A; Bojorquez-Morales, G, Energy payback time and Greenhouse Gas emissions: Studying the international energy agency guidelines architecture, J CLEAN PROD (2018) Nr 74 Vol 196 (), pp.1566-1575, DOI:10.1016/j.jclepro.2018.06.134, WOS:000444364400133
  188. Ma, J; Luo, ZB; Chen, F; Zhu, QL; Zhang, SL; Liu, GJ, A Practical Approach to Reduce Greenhouse Gas Emissions from Open Dumps through Infrastructure Restructuring: A Case Study in Nanjing City, China, SUSTAINABILITY-BASEL (2018) Nr 62 Vol 10 (8), pp.-, DOI:10.3390/su10082804, WOS:000446767700220
  189. Colantoni, A; Monarca, D; Marucci, A; Cecchini, M; Zambon, I; Di Battista, F; Maccario, D; Saporito, MG; Beruto, M, Solar Radiation Distribution inside a Greenhouse Prototypal with Photovoltaic Mobile Plant and Effects on Flower Growth, SUSTAINABILITY-BASEL (2018) Nr 62 Vol 10 (3), pp.-, DOI:10.3390/su10030855, WOS:000428567100282
  190. Achour, Y; Zejli, D, A Thermo-hconomic Analysis of Solar Energy-based Heating Systems for Greenhouse Application, INT RENEW SUST ENERG (2018) Nr 17 Vol (), pp.777-782, DOI:, WOS:000469362700141
  191. Mostefaoui, Z; Amara, S, Optimization of Irrigation with Photovoltaic System in the Agricultural Farms – Greenhouse: Case Study in Sahara (Adrar), LECT NOTE NETW SYST (2018) Nr 10 Vol 35 (), pp.401-408, DOI:10.1007/978-3-319-73192-6_42, WOS:000441054000043
  192. Patarau, T; Petreus, D; Etz, R; Lazar, E, Techno-economic feasibility study on an off-grid renewable energy microgrid for an isolated greenhouse in Romania, IEEE INT POWER ELEC (2018) Nr 16 Vol (), pp.445-450, DOI:, WOS:000462062900069
  193. Anifantis, AS; Santoro, F; Pascuzzi, S; Scarascia Mugnozza, G, STAND-ALONE PHOTOVOLTAIC AND HYDROGEN PLANT COUPLED WITH A GAS HEAT PUMP FOR GREENHOUSE HEATING, (2017) Nr 8 Vol  (), pp.41-45, DOI:10.24326/fmpmsa.2017.8, WOS:000451503400007
  194. Greenaway, T; Kohlenbach, P, Assessment of potential energy and greenhouse gas savings in the commercial building sector by using solar energy for air-conditioning purposes, PROCEDIA ENGINEER (2017) Nr 6 Vol 180 (), pp.715-724, DOI:10.1016/j.proeng.2017.04.231, WOS:000404873600073
  195. Cabrera, FJ; Sanchez-Molina, JA; Zaragoza, G; Perez-Garcia, M; Rodriguez-Diaz, F, Renewable energy technologies for greenhouses in semi-arid climates, SUSTAIN ENERG DEV (2017) Nr 178 Vol 13 (), pp.153-193, DOI:, WOS:000460216300010
  196. Jomaa, M; Tadeo, F; Mami, A, Modelling and control of greenhouses powered by a renewable energy system, I C SCI TECH AUTO CO (2017) Nr 8 Vol (), pp.482-487, DOI:, WOS:000432372100083
  197. Lopez-Luque, R; Martinez, J; Reca, J; Ruiz, R, Feasibility analysis and irrigation management in Mediterranean greenhouses using photovoltaic solar energy, RIBAGUA-REV IBEROAM (2017) Nr 20 Vol 4 (2), pp.74-83, DOI:10.1080/23863781.2017.1332806, WOS:000437212700002
  198. MacGregor, A; Hachem-Vermette, C, Cold-Climate Supermarket attached Greenhouse: A Case Study, (2017) Nr 15 Vol  (), pp.73-83, DOI:10.18086/eurosun.2016.01.01, WOS:000426895100008
  199. Rios, E; Romantchick, E; Sanchez, F; Reyes, J; Sanchez, E, ENERGY EFFICIENCY AND PERFORMANCE EVALUATION OF HYBRID PHOTOVOLTAIC SYSTEM FOR FAN-PAD OF GREENHOUSES, (2017) Nr 14 Vol  (), pp.1318-1327, DOI:10.18086/eurosun.2016.08.16, WOS:000426895100133
  200. Ghosal, MK; Sahoo, N, Sustainable Seedlings Raising and Vegetable Cultivation in a Greenhouse Integrated with Solar Photovoltaic and Earth Air Heat Exchanger System, ADV SCI LETT (2016) Nr 4 Vol 22 (2), pp.471-474, DOI:10.1166/asl.2016.6832, WOS:000380734400046
  201. Ge, ZW; Li, Y; Bian, CL, Study of a typical photovoltaic greenhouse in Hainan tropical island, AER ADV ENG RES (2016) Nr 0 Vol 98 (), pp.559-563, DOI:, WOS:000390887300098
  202. Li, CS; Wu, MX; Zhang, YF; Li, YJ, The Design on Desert Photovoltaic Greenhouse Environmental Parameters Acquisition System Based on ZigBee, (2016) Nr 9 Vol  (), pp.148-155, DOI:, WOS:000395500000028
  203. Liu, YP; Fan, L; Jie, G; Yang, X, Feasibility Study and Electric Power Substitution Schedule for Photovoltaic Solar Greenhouse in Gansu, (2016) Nr 5 Vol  (), pp.364-367, DOI:, WOS:000389849600056
  204. Metidji, N, Solar Drying of Agro-industrial Wastes using a Solar Greenhouse, INT RENEW SUST ENERG (2016) Nr 28 Vol (), pp.289-293, DOI:, WOS:000466883000058
  205. O’Rourke, JM; Seepersad, CC, THE IMPORTANCE OF CONTEXTUAL FACTORS IN DETERMINING THE GREENHOUSE GAS EMISSION IMPACTS OF SOLAR PHOTOVOLTAIC SYSTEMS, (2016) Nr 25 Vol  (), pp.-, DOI:, WOS:000379883700024
  206. Oliva, RB; Gonzalez, JF; Cardenas, GF, Mounting and performance measurements of a PV array addition to an existing small wind-power installation for greenhouse electric supply in Patagonia, INF CIENTIF TECN (2016) Nr 6 Vol 8 (2), pp.170-186, DOI:10.22305/ict-unpa.v8i2.179, WOS:000433859100009
  207. Tiwari, S; Dwivedi, VK; Tripathi, R; Tiwari, GN, Energy Analysis of Photovoltaic-Thermal (PVT) Greenhouse Under Forced Mode without Load Condition, (2016) Nr 11 Vol  (), pp.183-187, DOI:, WOS:000406610900034
  208. Tiwari, S; Tripathi, R; Tiwari, GN, Effect of Packing Factor of Photovoltaic Module on Performance of Photovoltaic-Thermal (PVT) Greenhouse Solar Dryer, (2016) Nr 8 Vol  (), pp.52-55, DOI:, WOS:000386567400010
  209. Patrono, G; Vergura, S; Pavan, AM, LCOE for Zero-Energy Greenhouse, INT CONF RENEW ENERG (2015) Nr 15 Vol (), pp.1291-1295, DOI:, WOS:000379126300220
  210. Sharma, PK; Samuel, DVK, Solar photovoltaic-powered ventilation and cooling system of a greenhouse, CURR SCI INDIA (2014) Nr 3 Vol 106 (3), pp.362-364, DOI:, WOS:000333439900015
  211. Azaza, M; Echaieb, K; Mami, A; Iqbal, A, Optimized Micro-climate Controller of a Greenhouse Powered by Photovoltaic Generator, (2014) Nr 25 Vol  (), pp.-, DOI:, WOS:000347870800040
  212. Azaza, M; Echaieb, K; Mami, A, DTC Control Strategy Of Photovoltaic Cooling System Of A Greenhouse, (2014) Nr 13 Vol  (), pp.-, DOI:, WOS:000360314400010
  213. Mormile, P; Coletta, A; Petrella, P, Ultrathin a-Si PV Panel for Greenhouse: Preliminary Trials in Italy, ACTA HORTIC (2014) Nr 4 Vol 1015 (), pp.263-268, DOI:, WOS:000333392700029
  214. Perez-Garcia, M; Cabrera, FJ; Perez-Alonso, J; Callejon-Ferre, AJ, Electricity production of flexible photovoltaic modules integrated on the roof of a “raspa y amagado” type greenhouse, (2014) Nr 11 Vol  (), pp.907-912, DOI:, WOS:000376620800154
  215. Serrano, I; Munoz-Garcia, MA; Alonso-Garcia, MC; Vela, N, Evaluation of the use of solar panels as a shade in greenhouses, (2014) Nr 5 Vol  (), pp.2056-2061, DOI:, WOS:000376620800351
  216. Bin, H, Research on Biological Greenhouse Photovoltaic Power Generation Access System Design, (2013) Nr 3 Vol  (), pp.957-964, DOI:, WOS:000329353500145
  217. Das, T; Bora, GC Anwar, S; Efstathiadis, H; Qazi, S, Greenhouse Solar Thermal Application, (2013) Nr 41 Vol  (), pp.462-479, DOI:10.4018/978-1-4666-1996-8.ch017, WOS:000312829600017
  218. Vorndran, S; Russo, J; Wu, YC; Kostuk, R, Hybrid photovoltaic/daylighting module for greenhouse environmental control, PROC SPIE (2013) Nr 10 Vol 8834 (), pp.-, DOI:10.1117/12.2026422, WOS:000326700300010
  219. Anctil, A; Fthenakis, V, Greenhouse Gases Emissions and Energy Payback of Large Photovoltaic Power Plants in the Northeast United States, (2012) Nr 8 Vol  (), pp.753-756, DOI:, WOS:000309917801008
  220. Ganguly, A; Ghosh, S, PERFORMANCE ANALYSIS OF SOLAR PV-FUEL CELL INTEGRATED FLORICULTURE GREENHOUSE, (2012) Nr 4 Vol  (), pp.1-6, DOI:, WOS:000321076700001
  221. Kim, KH, A Sun Tracking PV System Equipped Greenhouse Control System for Educational Purpose, ADV ENG FORUM (2012) Nr 4 Vol 43499 (), pp.80-84, DOI:10.4028/www.scientific.net/AEF.2-3.80, WOS:000317993700016
  222. Tagliabue, LC; Buzzetti, M; Marenzi, G, Energy performance of greenhouse for energy saving in buildings, ENRGY PROCED (2012) Nr 12 Vol 30 (), pp.1233-1242, DOI:10.1016/j.egypro.2012.11.136, WOS:000322163100135
  223. Ion, IV; Paraschiv, S; Paraschiv, S, GREENHOUSE GAS EMISSION ASSESSMENTS OF A MICRO-COMBINED COOLING, HEATING AND POWER SYSTEM FOR DOMESTIC RESIDENCE, INT CONF MODTECH PR (2011) Nr 8 Vol (), pp.525-528, DOI:, WOS:000392260500132
  224. Gavrila, S; Gontean, A, Greenhouse Energy Balance Modeling Review and Perspectives, (2010) Nr 9 Vol  (), pp.162-166, DOI:, WOS:000375700700030
  225. Zhai, QA; Alberts, S; Cao, HJ; Zhao, S; Yuan, C, Strength Analysis of International Feed-in Tariff Promotion of Clean Energy Applications for Greenhouse Gas Emission Mitigation, IEEE I SYMP SUST SYS (2010) Nr 24 Vol (), pp.-, DOI:, WOS:000287418200018
  226. Balas, MM; Balas, VE, A Sustainable Alimentation System for Our Future: The Passive Greenhouse, ELE COM ENG (2009) Nr 16 Vol (), pp.86-+, DOI:, WOS:000271254900009
  227. Balas, MM; Musca, SV; Toader, D; Mnerie, C; Musca, CB; Falcan, O, On a Promising Sustainable Energy System and its Control – the Passive Greenhouse, (2009) Nr 17 Vol  (), pp.233-+, DOI:, WOS:000275159600043
  228. Ganguly, A; Ghosh, S; Misra, D, MODELING & ANALYSIS OF SOLAR PV POWER SYSTEM FOR GREENHOUSE APPLICATION WITH ELECTROLYSER FUEL CELL BACK UP, (2009) Nr 14 Vol  (), pp.211-219, DOI:, WOS:000281910700025
  229. Ahmed, AU, Greenhouse gas mitigation opportunities through the application of solar energy in Bangladesh, (2003) Nr 9 Vol  (), pp.1353-1358, DOI:, WOS:000185208000214
  230. Cunha, JB; Morais, R; Cordeiro, M; Salgado, P; Serodio, C; Couto, C, Computerised management of greenhouses, ACTA HORTIC (1997) Nr 0 Vol (440), pp.147-152, DOI:, WOS:000071754800026
  231. FOSTER, RE; ZACHRITZ, WH; SCHOENMACKERS, R; POLKA, RL; REEL, C, POTENTIAL PHOTOVOLTAIC POWERED GREENHOUSE APPLICATIONS FOR DEVELOPING REGIONS, (1992) Nr 0 Vol  (), pp.225-230, DOI:, WOS:A1992BY07Z00037
  232. MOOMAW, WR, SOLAR STRATEGIES FOR ESCAPING THE GREENHOUSE HEAT TRAP, SOL CELLS (1989) Nr 19 Vol 27 (43469), pp.11-24, DOI:10.1016/0379-6787(89)90013-6, WOS:A1989CM44500003

 

Greenhouse Gas emissions

  1. Peng, JQ; Lu, L; Yang, HX, Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems, RENEW SUST ENERG REV (2013) Nr 110 Vol 19 (), pp.255-274, DOI:10.1016/j.rser.2012.11.035, WOS:000314905000021
  2. Lenzen, M, Life cycle energy and greenhouse gas emissions of nuclear energy: A review, ENERG CONVERS MANAGE (2008) Nr 122 Vol 49 (8), pp.2178-2199, DOI:10.1016/j.enconman.2008.01.033, WOS:000257009900024
  3. Fthenakis, V; Alsema, E, Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004 – early 2005 status, PROG PHOTOVOLTAICS (2006) Nr 12 Vol 14 (3), pp.275-280, DOI:10.1002/pip.706, WOS:000237232300008
  4. Hsu, DD; O’Donoughue, P; Fthenakis, V; Heath, GA; Kim, HC; Sawyer, P; Choi, JK; Turney, DE, Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation, J IND ECOL (2012) Nr 49 Vol 16 (), pp.S122-S135, DOI:10.1111/j.1530-9290.2011.00439.x, WOS:000303496400012
  5. Voorspools, KR; Brouwers, EA; D’haeseleer, WD, Energy content and indirect greenhouse gas emissions embedded in ’emission-free’ power plants: results for the Low Countries, APPL ENERG (2000) Nr 31 Vol 67 (3), pp.307-330, DOI:10.1016/S0306-2619(00)00016-7, WOS:000089265800006
  6. Menten, F; Cheze, B; Patouillard, L; Bouvart, F, A review of LCA greenhouse gas emissions results for advanced biofuels: The use of meta-regression analysis, RENEW SUST ENERG REV (2013) Nr 118 Vol 26 (), pp.108-134, DOI:10.1016/j.rser.2013.04.021, WOS:000325836300008

IEEE Indexed – (Greenhouse + PV) Papers

  1. Carbone C. De Capua R. Morello, Photovoltaic systems for powering greenhouses, 2011 International Conference on Clean Electrical Power (ICCEP)

 

  1. Anukit Saokaew Oran Chieochan Ekkarat Boonchieng, A smart photovoltaic system with Internet of Thing: A case study of the smart agricultural greenhouse, 2018 10th International Conference on Knowledge and Smart Technology (KST)

 

  1. Maher Azaza Kamel Echaieb ; Abdelkadr Mami ; Atif Iqbal, Optimized micro-climate controller of a greenhouse powered by photovoltaic generator, 2014 5th International Renewable Energy Congress (IREC)

 

  1. Faten Gouadria Lassaad SbitaNick Sigrimis, A greenhouse system control based on a PSO tuned PI regulator, 2017 International Conference on Green Energy Conversion Systems (GECS)

 

  1. Bartosz Pękosławski Piotr Krasiński Michał Siedlecki Andrzej Napieralski, Autonomous wireless sensor network for greenhouse environmental conditions monitoring, Proceedings of the 20th International Conference Mixed Design of Integrated Circuits and Systems – MIXDES 2013

 

  1. Giuseppe Patrono Silvano Vergura, Integration of a solar system in the greenhouse architecture, 2015 International Conference on Clean Electrical Power (ICCEP)

 

  1. Peng Zhuang Hao Liang Mitchell Pomphrey, Stochastic Multi-Timescale Energy Management of Greenhouses With Renewable Energy Sources, IEEE Transactions on Sustainable Energy

 

  1. Faten Gouadria Lassaad Sbita Nick Sigrimis, Super-twisting algorithm devoted to control the greenhouse system, 2017 International Conference on Green Energy Conversion Systems (GECS)

 

  1. Yasmine Achour Driss Zejli, A Thermo-Economic Analysis of Solar Energy-based Heating Systems for Greenhouse Application, 2018 6th International Renewable and Sustainable Energy Conference (IRSEC)

 

  1. Ruzaimi Ariffin S. Shafie W. Z. W. Hassan N. Azis M. Effendy Ya’acob, Conceptual design of hybrid photovoltaic-thermoelectric generator (PV/TEG) for Automated Greenhouse system, 2017 IEEE 15th Student Conference on Research and Development (SCOReD)

 

  1. Maher Azaza Kamel Echaieb Abdelkader Mami, DTC control strategy of photovoltaic cooling system of a greenhouse, 2014 International Conference on Composite Materials & Renewable Energy Applications (ICCMREA)

 

  1. Sumit Tiwari Rohit Tripathi N. Tiwari, Effect of packing factor of photovoltaic module on performance of photovoltaic-thermal (PVT) greenhouse solar dryer, 2016 International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES)

 

  1. Sumit Tiwari K. Dwivedi Rohit Tripathi G.N. Tiwari, Energy analysis of photovoltaic-thermal (PVT) greenhouse under forced mode without load condition, 2016 Second International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH)

 

  1. Ermuratskii V. Oleschuk F. Blaabjerg, Experimental investigation of two modified energy-saving constructions of solar greenhouses, 2015 International Conference on Renewable Energy Research and Applications (ICRERA)

 

  1. Krauter, Greenhouse gas reduction by PV, Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 2003.

 

  1. Manel Jomaa Fernando Tadeo Abdelkader Mami, Modelling and control of greenhouses powered by a renewable energy system, 2017 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)

 

  1. Marius M. Balas Sanda V. Musca Daniel Toader Corina Mnerie Calin B. Musca Ovidiu Falcan, On a promising sustainable energy system and its control – the passive greenhouse, 2009 3rd International Workshop on Soft Computing Applications

 

  1. Patarau D. Petreus R. Etz E. Lazar, Techno-Economic Feasibility Study on an Off-Grid Renewable Energy Microgrid for an Isolated Greenhouse in Romania, 2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC)

MDPI – Open Access Journal Papers (Greenhouse + PV)

  1. Simona Moretti Alvaro Marucci, A Photovoltaic Greenhouse with Passive Variation in Shading by Fixed Horizontal PV Panels, Energies 2019, 12(17), 3269; https://doi.org/10.3390/en12173269 – 25 Aug 2019

 

  1. Simona Moretti Alvaro Marucci, A Photovoltaic Greenhouse with Variable Shading for the Optimization of Agricultural and Energy Production, Energies 2019, 12(13), 2589; https://doi.org/10.3390/en12132589 – 05 Jul 2019

 

  1. Georgios Nikolaou, Damianos Neocleous, Nikolaos Katsoulas and Constantinos Kittas, Effects of Cooling Systems on Greenhouse Microclimate and Cucumber Growth under Mediterranean Climatic Conditions, Agronomy 2019, 9(6), 300; https://doi.org/10.3390/agronomy9060300 – 11 Jun 2019

 

  1. Georgios K. Ntinas, et al., Performance and Hydroponic Tomato Crop Quality Characteristics in a Novel Greenhouse Using Dye-Sensitized Solar Cell Technology for Covering Material, Horticulturae 2019, 5(2), 42; https://doi.org/10.3390/horticulturae5020042 – 01 Jun 2019

 

  1. Se-Hyeok Choi, Akhtar Hussain Hak-Man Kim, Optimal Operation of Building Microgrids with Rooftop Greenhouse Under Component Outages in Islanded Mode, Energies 2019, 12(10), 1930; https://doi.org/10.3390/en12101930 – 20 May 2019

 

  1. M. El-Bashir,M. S. AlSalhi,F. Al-Faifi andW. K. Alenazi, Spectral Properties of PMMA Films Doped by Perylene Dyestuffs for Photoselective Greenhouse Cladding Applications, Polymers 2019, 11(3), 494; https://doi.org/10.3390/polym11030494 – 14 Mar 2019

 

  1. Artur Nemś, Magdalena Nemś, Klaudia Świder, Analysis of the Possibilities of Using a Heat Pump for Greenhouse Heating in Polish Climatic Conditions—A Case Study, Sustainability 2018, 10(10), 3483; https://doi.org/10.3390/su10103483 – 28 Sep 2018

 

  1. Il-Seok Choi,Akhtar Hussain,Van-Hai Bui, Hak-Man Kim, A Multi-Agent System-Based Approach for Optimal Operation of Building Microgrids with Rooftop Greenhouse, Energies 2018, 11(7), 1876; https://doi.org/10.3390/en11071876 – 18 Jul 2018

 

  1. Zhi Li, et al., Electrical Energy Producing Greenhouse Shading System with a Semi-Transparent Photovoltaic Blind Based on Micro-Spherical Solar Cells, Energies 2018, 11(7), 1681; https://doi.org/10.3390/en11071681 – 27 Jun 2018

 

  1. Ioan Aschilean, Design and Concept of an Energy System Based on Renewable Sources for Greenhouse Sustainable Agriculture, Energies 2018, 11(5), 1201; https://doi.org/10.3390/en11051201 – 09 May 2018

 

  1. Andrea Colantoni, et al., Solar Radiation Distribution inside a Greenhouse Prototypal with Photovoltaic Mobile Plant and Effects on Flower Growth, Sustainability 2018, 10(3), 855; https://doi.org/10.3390/su10030855 – 18 Mar 2018

 

  1. Alexandros Sotirios Anifantis et al., Photovoltaic and Hydrogen Plant Integrated with a Gas Heat Pump for Greenhouse Heating: A Mathematical Study, Sustainability 2018, 10(2), 378; https://doi.org/10.3390/su10020378 – 01 Feb 2018

 

  1. Giuseppina Nicolosi,Roberto Volpe andAntonio Messineo, An Innovative Adaptive Control System to Regulate Microclimatic Conditions in a Greenhouse, Energies 2017, 10(5), 722; https://doi.org/10.3390/en10050722 – 19 May 2017

Scholar Indexed - (Greenhouse + PV) Papers

  1. M Kadowaki, A Yano, F Ishizu, T Tanaka, S Noda, Effects of greenhouse photovoltaic array shading on Welsh onion growth, Biosystems Engineering, 2012 – Elsevier

 

  1. S Nayak, GN Tiwari, Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse, Energy and Buildings, 2008 – Elsevier

 

  1. P Barnwal, GN Tiwari, Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: an experimental study, – Solar energy, 2008 – Elsevier

 

  1. S Krauter, R Rüther, Considerations for the calculation of greenhouse gas reduction by photovoltaic solar energy, Renewable Energy, 2004 – Elsevier

 

  1. M Cossu, L Murgia, L Ledda, PA Deligios, A Sirigu… , Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity, Applied Energy, 2014 – Elsevier

 

  1. A Yano, M Onoe, J Nakata, Prototype semi-transparent photovoltaic modules for greenhouse roof applications, Biosystems Engineering, 2014 – Elsevier

 

  1. A Ganguly, D Misra, S Ghosh, Modeling and analysis of solar photovoltaic-electrolyzer-fuel cell hybrid power system integrated with a floriculture greenhouse, Energy and buildings, 2010 – Elsevier

 

  1. J Pérez-Alonso, M Pérez-García… – … Performance analysis and neural modelling of a greenhouse integrated photovoltaic system, and Sustainable Energy …, 2012 – Elsevier

 

  1. S Nayak, GN Tiwari, Theoretical performance assessment of an integrated photovoltaic and earth air heat exchanger greenhouse using energy and exergy analysis methods, – Energy and Buildings, 2009 – Elsevier

 

  1. H Mahmoudi, SA Abdul-Wahab, MFA Goosen…, Weather data and analysis of hybrid photovoltaic–wind power generation systems adapted to a seawater greenhouse desalination unit designed for arid coastal,  Desalination, 2008 – Elsevier

 

  1. A Yano, K Tsuchiya, K Nishi, T Moriyama, O Ide, Development of a greenhouse side-ventilation controller driven by photovoltaic energy, Biosystems Engineering, 2007 – Elsevier

 

  1. A Yano, M Kadowaki, A Furue, N Tamaki… , Shading and electrical features of a photovoltaic array mounted inside the roof of an east–west oriented greenhouse- Biosystems …, 2010 – Elsevier

 

  1. A Yano, A Furue, M Kadowaki, T Tanaka, E Hiraki…, Electrical energy generated by photovoltaic modules mounted inside the roof of a north–south oriented greenhouse, – Biosystems …, 2009 – Elsevier

 

  1. H Fatnassi, C Poncet, MM Bazzano, R Brun, N Bertin, A numerical simulation of the photovoltaic greenhouse microclimate, Solar Energy, 2015 – Elsevier

 

  1. P Barnwal, A Tiwari, Design, construction and testing of hybrid photovoltaic integrated greenhouse dryer, International Journal of Agricultural Research, 2008 – scialert.net

 

  1. MC Chuang, C Chung – US Patent 8,186,100, 2012 – Google Patents, Photovoltaic greenhouse structure

 

  1. S Tiwari, GN Tiwari, IM Al-Helal, Performance analysis of photovoltaic–thermal (PVT) mixed mode greenhouse solar dryer, – Solar Energy, 2016 – Elsevier

 

  1. S Nayak, GN Tiwari, Energy metrics of photovoltaic/thermal and earth air heat exchanger integrated greenhouse for different climatic conditions of India, Applied Energy, 2010 – Elsevier

 

  1. M Faisal, A Desa, R Abdul, A Ishak, J Rimfiel… – American Journal of …Design and development of a photovoltaic power system for tropical greenhouse cooling. 2007 – cabdirect.org

 

  1. A Marucci, D Monarca, M Cecchini… – Mathematical …, The semitransparent photovoltaic films for Mediterranean greenhouse: a new sustainable technology, 2012 – hindawi.com

 

  1. A Marucci, A Cappuccini – Applied energy, 2016 – Elsevier, Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions

 

  1. A Yildiz, O Ozgener, L Ozgener, Exergetic performance assessment of solar photovoltaic cell (PV) assisted earth to air heat exchanger (EAHE) system for solar greenhouse cooling, Energy and Buildings, 2011 – Elsevier

 

  1. A Genovese, G Alonzo, V Catanese, L Incrocci… – Photovoltaic as sustainable energy for greenhouse and closed plant production system, 2008 – actahort.org

 

  1. AS Anifantis, A Colantoni, S Pascuzzi Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating, Renewable energy, 2017 – Elsevier

 

  1. S Tiwari, GN Tiwari, Thermal analysis of photovoltaic-thermal (PVT) single slope roof integrated greenhouse solar dryer, Solar Energy, 2016 – Elsevier

 

  1. S Tiwari, GN Tiwari, Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer, – Energy, 2016 – Elsevier

 

  1. R Brun, H Fatnassi, C Poncet, MM Muller, Photovoltaic greenhouses, non-sense or a real opportunity for the greenhouse systems? – … Horticultural Congress on …, 2010 – actahort.org

 

  1. A Marucci, I Zambon, A Colantoni, D Monarca, A combination of agricultural and energy purposes: Evaluation of a prototype of photovoltaic greenhouse tunnel, Sustainable Energy …, 2018 – Elsevier

 

  1. Drying and Testing of Mint (Mentha piperita) by a Hybrid Photovoltaic-Thermal (PVT)-Based Greenhouse Dryer
  2. S Nayak, A Kumar, J Mishra, GN Tiwari – Drying technology, 2011 – Taylor & Francis
  3. Assessment of Italian energy policy through the study of a photovoltaic investment on greenhouse
  4. S Tudisca, AM Di Trapani, F Sgroi… – African Journal of …, 2013 – academicjournals.org
  5. Multi-module concentrated photovoltaic thermal system feasibility for greenhouse heating: Model validation and techno-economic analysis
  6. MI Hussain, A Ali, GH Lee – Solar Energy, 2016 – Elsevier
  7. Photovoltaic panel-interfaced solar-greenhouse distillation systems
  8. JW Lee – US Patent 8,673,119, 2014 – Google Patents
  9. Policy and environmental implications of photovoltaic systems in farming in southeast Spain: can greenhouses reduce the greenhouse effect?
  10. A Carreño-Ortega, E Galdeano-Gómez, J Pérez-Mesa… – Energies, 2017 – mdpi.com
  11. Study of a pilot photovoltaic-electrolyser-fuel cell power system for a geothermal heat pump heated greenhouse and evaluation of the electrolyser efficiency and …
  12. I Blanco, S Pascuzzi, AS Anifantis… – Journal of …, 2014 – j.agroengineering.org
  13. Dynamic photovoltaic greenhouse: Energy balance in completely clear sky condition during the hot period
  14. A Marucci, A Cappuccini – Energy, 2016 – Elsevier
  15. Development of a power saving greenhouse side window controller driven by photovoltaic energy
  16. A YANO, K TSUCHIYA, K NISHI… – Journal of the …, 2005 – jstage.jst.go.jp
  17. Inside or Outside? Linking Outdoor and Indoor Lifetime Tests of ITO‐Free Organic Photovoltaic Devices for Greenhouse Applications
  18. GA dos Reis Benatto, M Corazza, B Roth… – Energy …, 2017 – Wiley Online Library
  19. Visibly transparent organic photovoltaic with improved transparency and absorption based on tandem photonic crystal for greenhouse application
  20. F Yang, Y Zhang, Y Hao, Y Cui, W Wang, T Ji… – Applied …, 2015 – osapublishing.org
  21. Thermal modelling of photovoltaic thermal (PVT) integrated greenhouse system for biogas heating
  22. S Tiwari, J Bhatti, GN Tiwari, IM Al-Helal – Solar Energy, 2016 – Elsevier
  23. ENERGY EFFICIENCY AND PHOTOVOLTAIC SOLAR FOR GREENHOUSE AGRICULTURE.
  24. C Campiotti, C Bibbiani, F Dondi… – Journal of …, 2011 – search.ebscohost.com
  25. [PDF] Economic feasibility study of semitransparent photovoltaic technology integrated on greenhouse covering structures
  26. M Cossu, L Murgia, M Caria, A Pazzona – … Ragusa SHWA2010-Work …, 2010 – ragusashwa.it
  27. Photovoltaic and hydrogen plant integrated with a gas heat pump for greenhouse heating: A mathematical study
  28. A Anifantis, A Colantoni, S Pascuzzi, F Santoro – Sustainability, 2018 – mdpi.com
  29. Energetic performance analysis of a solar photovoltaic cell (PV) assisted closed loop earth-to-air heat exchanger for solar greenhouse cooling: An experimental study …
  30. A Yıldız, O Ozgener, L Ozgener – Renewable energy, 2012 – Elsevier
  31. [PDF] Thermodynamic performance analysis of a hybrid Photovoltaic-Thermal (PV/T) integrated greenhouse air heater and dryer
  32. P Barnwal, A Tiwari – International Journal of Exergy, 2009 – pdfs.semanticscholar.org
  33. Power generating performance of photovoltaic power system for greenhouse equipment operation
  34. YC Yoon, YH Bae, YS Ryou, SH Lee… – Journal of Bio …, 2009 – agris.fao.org
  35. System dynamics of a photovoltaic integrated greenhouse
  36. P Juang, M Kacira – … Crop Production in Greenhouse and Plant 1037, 2013 – actahort.org
  37. Solar radiation distribution inside a monospan greenhouse with the roof entirely covered by photovoltaic panels
  38. S Castellano, P Santamaria… – Journal of Agricultural …, 2016 – agroengineering.org
  39. [HTML] Performance evaluation of an integrated hybrid photovoltaic thermal (PV/T) greenhouse system
  40. S Nayak, A Tiwari – International Journal of Agricultural Research, 2007 – scialert.net
  41. [PDF] Photovoltaic and geothermal integration system for greenhouse heating: an experimental study
  42. GS MUGNOZZA, S PASCUZZI… – VInternational …, 2011 – researchgate.net
  43. V International Scientific Symposium ” Farm Machinery and Process Management in Sustainable
  44. Agriculture” Lublin, Poland, 2011 135 PHOTOVOLTAIC AND GEOTHERMAL INTEGRATION
  45. SYSTEM FOR GREENHOUSE HEATING: AN EXPERIMENTAL STUDY Giacomo SCARASCIA …
  46. Analysis of internal shading degree to a prototype of dynamics photovoltaic greenhouse through simulation software
  47. A Marucci, D Monarca, M Cecchini… – Journal of …, 2015 – agroengineering.org
  48. Photovoltaic panel-interfaced solar-greenhouse distillation systems
  49. JW Lee – US Patent 9,259,662, 2016 – Google Patents
  50. A study of evaporative cooling pad performance for a photovoltaic powered greenhouse
  51. I Al-Helal, N Al-Abbadi, A Al-Ibrahim – … for Crop Production in the Tropics …, 2004 – actahort.org
  52. Performance evaluation of photovoltaic thermal greenhouse dryer and development of characteristic curve
  53. Shyam, IM Al-Helal, AK Singh… – Journal of Renewable and …, 2015 – aip.scitation.org
  54. [PDF] Performance assessment of photovoltaic, ground source heat pump and hydrogen heat generator in a stand-alone systems for greenhouse heating
  55. AS Anifantis – Chemical Engineering Transactions, 2017 – pdfs.semanticscholar.org
  56. [PDF] Soilless production of wild rocket as affected by greenhouse coverage with photovoltaic modules
  57. D Buttaro, M Renna, C Gerardi, F Blando… – Acta Sci. Pol …, 2016 – researchgate.net
  58. Development of an integrated reverse osmosis-greenhouse system driven by solar photovoltaic generators
  59. PA Davies, AK Hossain – Desalination and Water Treatment, 2010 – Taylor & Francis
  60. Photovoltaic panel-interfaced solar-greenhouse distillation systems
  61. JW Lee – US Patent App. 14/832,455, 2015 – Google Patents
  62. Life cycle energy metrics and CO2 credit analysis of a hybrid photovoltaic/thermal greenhouse dryer
  63. P Barnwal, GN Tiwari – International Journal of Low-Carbon …, 2008 – academic.oup.com
  64. [PDF] Life cycle cost analysis of a hybrid photovoltaic/thermal greenhouse dryer
  65. P Barnwal, GN Tiwari – Journal of Open Environmental Sciences, 2008 – Citeseer
  66. Effects of the photovoltaic roofs on the greenhouse microclimate
  67. M Cossu, A Yano, L Murgia, L Ledda… – … Symposium on New …, 2015 – actahort.org
  68. Experimental validation of hybrid photovoltaic-thermal (PV/T) greenhouse dryer under forced mode
  69. P Barnwal, GN Tiwari – International journal of food engineering, 2010 – degruyter.com
  70. [PDF] Photovoltaic solar and solid biomass for greenhouse agriculture
  71. CA Campiotti, A Latini, M Scoccianti, C Viola – Calitatea, 2014 – researchgate.net
  72. Simulation of solar radiation transmission into a lean-to greenhouse with photovoltaic cells on the roof
  73. T KOZAI, D HE, H OHTSUKA… – Environment Control in …, 1999 – jstage.jst.go.jp
  74. Photovoltaic panel-interfaced solar-greenhouse distillation systems
  75. JW Lee – US Patent App. 10/093,552, 2018 – Google Patents
  76. [PDF] A new control strategy of indoor air temperature in a photovoltaic greenhouse
  77. K Echaieb, M Azaza, A Mami – … Journal of Soft Computing and Software …, 2013 – jscse.com
  78. Solar radiation distribution inside a greenhouse prototypal with photovoltaic mobile plant and effects on flower growth
  79. A Colantoni, D Monarca, A Marucci, M Cecchini… – Sustainability, 2018 – mdpi.com
  80. Development of transparent greenhouse cover with function of generating electricity by surplus light and photovoltaic
  81. C Feng, H Zheng, R Wang – Transactions of the Chinese …, 2014 – ingentaconnect.com
  82. Thermal analysis of photovoltaic thermal integrated greenhouse system (PVTIGS) for heating of slurry in potable biogas plant: An experimental study
  83. S Tiwari, GN Tiwari – Solar Energy, 2017 – Elsevier
  84. Applications of building integrated photovoltaic modules in a greenhouse of Northern Taiwan
  85. YC Kuo, CM Chiang, PC Chou, HJ Chen… – Journal of Biobased …, 2012 – ingentaconnect.com
  86. Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe
  87. M Cossu, A Cossu, PA Deligios, L Ledda, Z Li… – … and Sustainable Energy …, 2018 – Elsevier
  88. Thermo-fluid dynamic modeling and simulation of a bioclimatic solar greenhouse with self-cleaning and photovoltaic glasses
  89. P Sdringola, S Proietti, U Desideri, G Giombini – Energy and Buildings, 2014 – Elsevier
  90. Energy and economic analysis of microalgae cultivation in a photovoltaic-assisted greenhouse: Scenedesmus obliquus as a case study
  91. E Barbera, E Sforza, L Vecchiato, A Bertucco – Energy, 2017 – Elsevier
  92. … harvesting performance of the photovoltaic modules using an automatic cooling system and assessing its economic benefits of mitigating greenhouse effects on the …
  93. JC Wang, MS Liao, YC Lee, CY Liu, KC Kuo… – Journal of Power …, 2018 – Elsevier
  94. [PDF] Performance of winter greenhouse coupled with solar photovoltaic and earth air heat exchanger
  95. S Nayak, MK Ghosal, GN Tiwari – … Engineering International: CIGR …, 2007 – cigrjournal.org
  96. Shading and electric performance of a prototype greenhouse blind system based on semi-transparent photovoltaic technology
  97. Z Li, A Yano, M Cossu, H Yoshioka, I Kita… – Journal of Agricultural …, 2018 – jstage.jst.go.jp
  98. Performance Analysis of a Floriculture Greenhouse Powered by Integrated Solar Photovoltaic Fuel Cell System
  99. A Ganguly, S Ghosh – Journal of …, 2011 – … .asmedigitalcollection.asme.org
  100. Solar light distribution inside a greenhouse with the roof area entirely covered with photovoltaic panels
  101. M Cossu, L Ledda, PA Deligios, A Sirigu… – … Symposium on Models …, 2016 – actahort.org
  102. Photovoltaic greenhouse structure
  103. Y Chang – US Patent 8,745,919, 2014 – Google Patents
  104. Photovoltaic greenhouse structure
  105. MC Chuang, C Chung – US Patent 8,418,401, 2013 – Google Patents
  106. Optimized micro-climate controller of a greenhouse powered by photovoltaic generator
  107. M Azaza, K Echaieb, A Mami… – 2014 5th International …, 2014 – ieeexplore.ieee.org
  108. Generating capacity prediction of automatic tracking power generation system on inflatable membrane greenhouse attached photovoltaic
  109. X Xu, Q Liu, M Minami – Nongye Jixie Xuebao …, 2012 – okayama.pure.elsevier.com
  110. A Photovoltaic Greenhouse with Variable Shading for the Optimization of Agricultural and Energy Production
  111. S Moretti, A Marucci – Energies, 2019 – mdpi.com
  112. Energy performance of a concentrated photovoltaic energy system with static linear Fresnel lenses integrated in a greenhouse
  113. BAJ van vanTuijl, P Sonneveld, J Campen… – Solar Energy, 2011 – narcis.nl
  114. Electrical energy producing greenhouse shading system with a semi-transparent photovoltaic blind based on micro-spherical solar cells
  115. Z Li, A Yano, M Cossu, H Yoshioka, I Kita, Y Ibaraki – Energies, 2018 – mdpi.com
  116. Analysis of the internal shading in a photovoltaic greenhouse tunnel
  117. A Marucci, D Monarca, A Colantoni… – Journal of …, 2017 – agroengineering.it
  118. Study of a typical photovoltaic greenhouse in Hainan tropical island
  119. Z Ge, Y Li, C Bian – 2016 5th International Conference on Energy …, 2016 – atlantis-press.com
  120. Photovoltaic modules for an agricultural greenhouse and method for manufacturing such modules
  121. PE Gravisse, F Le Poull – US Patent App. 13/579,424, 2013 – Google Patents
  122. [PDF] Thermal Analysis of Photovoltaic Integrated Greenhouse Solar Dryer
  123. S Tiwari, R Tripathi, GN Tiwari – World Academy of …, 2016 – pdfs.semanticscholar.org
  124. Energy sustainable greenhouse crop cultivation using photovoltaic technologies
  125. A Yano, M Cossu – Renewable and Sustainable Energy Reviews, 2019 – Elsevier
  126. A smart photovoltaic system with Internet of Thing: A case study of the smart agricultural greenhouse
  127. A Saokaew, O Chieochan… – 2018 10th International …, 2018 – ieeexplore.ieee.org
  128. [PDF] Off-Grid Photovoltaic System In A Temperate Climate Greenhouse In Virginia
  129. D Mose, E Mandes, J Metcalf – Proceedings of the Annual …, 2010 – scholarworks.umass.edu
  130. Energy analysis of photovoltaic-thermal (PVT) greenhouse under forced mode without load condition
  131. S Tiwari, VK Dwivedi, R Tripathi… – … Intelligence on Power …, 2016 – ieeexplore.ieee.org
  132. Conceptual design of hybrid photovoltaic-thermoelectric generator (PV/TEG) for Automated Greenhouse system
  133. MR Ariffin, S Shafie, WZW Hassan… – 2017 IEEE 15th …, 2017 – ieeexplore.ieee.org
  134. [PDF] Thermal model development and performance analysis of a solar photovoltaic supported greenhouse dryer
  135. RK De, A Ganguly – International Journal of Renewable Energy …, 2016 – researchgate.net
  136. Crop production and energy generation in a greenhouse integrated with semi-transparent organic photovoltaic film
  137. K Okada, I Yehia, M Teitel, M Kacira – … Crop Production in Greenhouse …, 2017 – actahort.org
  138. Adaptive network architecture and firefly algorithm for biogas heating model aided by photovoltaic thermal greenhouse system
  139. G Singh, VK Jain, A Singh – Energy & Environment, 2018 – journals.sagepub.com
  140. [PDF] Performance of photovoltaic and ground source heat pump system for daytime cooling of mushroom greenhouse during summer: preliminary analysis
  141. AS Anifantis, A Przywara, S Pascuzzi… – Engineering for Rural …, 2018 – researchgate.net
  142. Theoretical Performance of Integrated Photovoltaic/Thermal Air Collector, Earth-Air Heat Exchanger and Greenhouse with a Floor of Shape-Stabilized Phase-Change …
  143. BJ Tsai, YJ Jhang, TC Liau – Advanced Science Letters, 2012 – ingentaconnect.com
  144. Feasibility Study and Electric Power Substitution Schedule for Photovoltaic Solar Greenhouse in Gansu
  145. Y Liu, L Fan, G Jie, X Yang – DEStech Transactions on …, 2016 – dpi-proceedings.com
  146. Photovoltaic module unit and photovoltaic ecological greenhouse
  147. B Wang, P Ni, XU Zhixiang, Y Hu… – US Patent App. 16 …, 2019 – Google Patents
  148. Design and Application of Photovoltaic Low Carbon Greenhouse
  149. D Wei, Z Zengchan, Z Jieqiang, L Libo… – Agricultural …, 2013 – en.cnki.com.cn
  150. [PDF] Photovoltaic Power System for Tropical Greenhouse Cooling
  151. D Ahmad, FMS Al-Shamiry – Engineering Conference, 2007 – researchgate.net
  152. Solar greenhouse with an integrated concentrated PhotoVoltaic System.
  153. PJ Sonneveld, G Swinkels, GPA Bot – researchgate.net
  154. Application of Photovoltaic Cells as a Power Supply for Smart Greenhouse Project
  155. S Fuada, M Thobib, N Jannah, A Risfanda – KnE Energy, 2015 – knepublishing.com
  156. Application of Photovoltaic Power Generation Technology in Greenhouse
  157. Q YU, J YANG – Advances in New and Renewable Energy, 2015 – en.cnki.com.cn
  158. Hybrid photovoltaic/daylighting module for greenhouse environmental control
  159. S Vorndran, J Russo, Y Wu… – … Optics: Efficient Design …, 2013 – spiedigitallibrary.org
  160. DESIGN AND DEVELOPMENT OF HYBRID SOLAR PHOTOVOLTAIC GREENHOUSE DRYER
  161. M MADHAVA – 2017 – krishikosh.egranth.ac.in
  162. [PDF] DTC ControlStrategy Of Photovoltaic Cooling System Of A Greenhouse
  163. K ECHAIEB, M AZAZA, M Abdelkader – researchgate.net
  164. POTENTIAL PHOTOVOLTAIC POWERED GREENHOUSE APPLICATIONS FOR DEVELOPING REGIONS
  165. RE Foster, WH Zachritz… – 1991 Solar World …, 1992 – books.google.com
  166. Thermal Modeling and Simulation of a Photovoltaic Greenhouse Prototype
  167. J Maisonneuve, P Pourmovahed – 2017 ASABE Annual …, 2017 – elibrary.asabe.org
  168. DTC control strategy of photovoltaic cooling system of a greenhouse
  169. M Azaza, K Echaieb, A Mami – 2014 International Conference …, 2014 – ieeexplore.ieee.org
  170. Effects of Photovoltaic Greenhouse on Growth, Photosynthesis and Quality of Pakchoi
  171. SHU Sheng, YU Jiong-hua, TAO Mei-qi… – China …, 2017 – en.cnki.com.cn
  172. Optimization of Irrigation with Photovoltaic System in the Agricultural Farms-Greenhouse: Case Study in Sahara (Adrar)
  173. Z Mostefaoui, S Amara – … Conference in Artificial Intelligence in Renewable …, 2017 – Springer
  174. Yield and quality of lettuce in response to the plant position in photovoltaic greenhouse
  175. A Sirigu, GR Urracci, G Carboni, F Chessa… – … on Horticulture in …, 2016 – actahort.org
  176. [PDF] Drying of Red Chilli in Photovoltaic Powered Greenhouse Dryer
  177. M Samreen, AR Rao – 2017 – ijetsr.com
  178. [PDF] Design and performance evaluation of an integrated hybrid photovoltaic greenhouse cerying system.
  179. P Barnwal – 2008 – eprint.iitd.ac.in
  180. Effect of packing factor of photovoltaic module on performance of photovoltaic-thermal (PVT) greenhouse solar dryer
  181. S Tiwari, R Tripathi, GN Tiwari – 2016 International Conference …, 2016 – ieeexplore.ieee.org
  182. Testing organic photovoltaic modules for application as greenhouse cover or shading element
  183. M Friman Peretz, F Geoola, I Yehia, S Ozer, A Levi… – 2019 – pubag.nal.usda.gov
  184. [PDF] Performance Evaluation of an Integrated Hybrid Photovoltaic/Thermal (PV/T) Greenhouse
  185. S Parveen, QP Rana – International Journal of Engineering, 2013 – eaas-journal.org
  186. Solar photovoltaic-powered ventilation and cooling system of a greenhouse.
  187. PK Sharma, DVK Samuel – Current Science, 2014 – cabdirect.org
  188. A Photovoltaic Greenhouse with Passive Variation in Shading by Fixed Horizontal PV Panels
  189. S Moretti, A Marucci – Energies, 2019 – mdpi.com
  190. Preliminary study on power generation using photovoltaic solar greenhouse in winter.
  191. X Zhao, ZR Zou – Journal of Northwest A & F University-Natural …, 2014 – cabdirect.org
  192. Greenhouse Effect in Photovoltaic Cells to Enhance Efficiency of Power Beam Conversion
  193. A Sergeev, A Hewitt, H Hier, CM Waits, MA Steiner… – MRS …, 2019 – cambridge.org
  194. Greenhouse Effect to Enhance Photovoltaic Conversion Efficiency above the Detailed Balance Limit

A Sergeev, K Sablon, J Little – APS Meeting Abstracts, 2018 – adsabs.harvard.edu